Chapter 6

Evaluations and conclusions

In this thesis we have presented research on the balance between memory and search
in two-player zero-sum games. As example domains we have used the games of chess
and domineering. The trade-off between memory and search led to the formulation of
three problem statements. In this chapter the problem statements are re-addressed
and evaluated.

6.1 More memory and less search

We investigated whether we can exploit the large amount of memory currently avail-
able. The underlying idea is that storing more knowledge into memory may result in
a decreasing need for search. A depth-first search algorithm only stores the path from
the root to the node under investigation, and hence it uses little memory. However,
many depth-first search algorithms use the available memory for keeping a trans-
position table. The transposition table eliminates the need for search at identical
nodes, because the results of previous search processes have been saved in the table.
The first problem statement addresses decreasing the need for search by increasing
the use of memory.

Problem statement 1: Which methods exist to improve the efficiency of a transpo-
sition table?

In Chapter 2 we investigated three methods of improving the efficiency of a
transposition table. Irrespective of the size of the transposition table, collisions (cf.
subsection 2.4.2) are bound to occur. When a collision occurs, a choice has to be
made which of the two positions involved should be preserved in the transposition
table. Such a choice is governed by a replacement scheme.

The first method to improve the efficiency of the transposition table is to improve
the replacement scheme. Experiments have shown that a two-level scheme works
significantly better than a traditional one-level scheme. Further, the concept Big

107



108 Chapter 6. Evaluations and conclusions

(based on the number of nodes of the subtree) works better than the most widely
used concept Deep (based on the depth of the subtree).

The second (obvious) method of improving the efficiency of a transposition table
is to increase the number of positions in the table. In most implementations the num-
ber of positions usually is a power of two. Hence, increasing the number of positions
means doubling the number of positions. However, after a certain transposition-table
size has been reached it turns out that doubling the number of positions in the table
has a limited benefit. Moreover, doubling the number of positions in the table can
cause the table to take up too much memory.

When doubling the number of positions has a limited benefit the memory can be
used to store additional information in an entry. This is the third method for im-
proving the efficiency of the transposition table. We first have performed experiments
to investigate which information is more important to store in a transposition-table
entry: the best move in a position, or the score of that move. Experiments show that
the score is more important than the move. Further, we have investigated the effect
of storing an n-ply PV (n = 2..5) in an entry, instead of only the best move (a 1-ply
PV). Our results show that storing additional information in an entry is a profitable
way of using the available memory, which outperforms the benefit of doubling the
number of positions in the table. We believe that this is a fruitful domain for future
research (cf. Section 6.4).

6.2 Less memory and more search

We investigated whether we can exploit the increase in computer speed. The underly-
ing idea is that more speed enables more search, thereby acquiring more knowledge,
and hence decreasing the need for memory. Best-first search needs a large amount
of memory to store the entire search tree. At present computer speeds, the memory
available is quickly filled. Since the quality of a best-first search algorithm depends
on the quality of the directing knowledge, ways have to be found to use the increase
in speed to acquire more knowledge per node, hence also improving the directing
knowledge. Consequently, the search process will search the state space more effi-
ciently, reducing the need for memory at the cost of more search. The second problem
statement addresses decreasing the need for memory by increasing the use of search.

Problem statement 2: Which methods exist for best-first search to reduce the need
for memory by increasing the search, thereby gaining more knowledge per
node?

In Chapter 4 we introduced the pnZ-search algorithm. This is a best-first search
algorithm (pn search), using a second search (also pn search) as evaluation of a
leaf, thereby adding more (directing) knowledge to every node in the search tree.
Experiments with this algorithm (listed in section 4.4) show that pn? search is a
good method of reducing the need for memory by increasing the search. The pn?-
search algorithm uses roughly twice as much search time compared to the traditional



6.3. Less memory and less search 109

pn-search algorithm, leading to a decrease in the need for memory. A further advan-
tage of the pn’-search algorithm is that it solves test positions not solvable (due to
memory constraints) by a standard pn-search framework.

6.3 Less memory and less search

In the first problem statement we tried to reduce the need for search by increasing
the use of memory. Analogously, in the second problem statement we tried to reduce
the need for memory by increasing the use of search. An attempt to combine the
advantages of both approaches (reducing the need for search and reducing the need
for memory) is the following. In a search tree it is profitable to recognize transposi-
tions and to ensure that for each set of identical nodes, only one subtree is expanded.
If a best-first search algorithm (which stores the whole search tree in memory) is
used, the search tree is converted into a search graph, by joining identical nodes
into one node. This causes subtrees to be merged, decreasing the need for mem-
ory. Since the graph contains fewer nodes than the tree, less searching is needed as
well. However, joining identical nodes into one node introduces the so-called graph-
history-interaction (GHI) problem, since determining whether nodes are identical is
not the same as determining whether the search states represented by the nodes are
identical. The third problem statement addresses decreasing the need for memory
and decreasing the need for search.

Problem statement 3: Is it possible to give a solution for the GHI problem for best-
first search?

In Chapter 5 we have given a solution to the GHI problem for best-first search,
resulting in a Directed-Cyclic-Graph (DCG) algorithm for pn search, called the BTA
(Base-Twin Algorithm) algorithm. This algorithm is based on the distinction of two
types of nodes, termed base nodes and twin nodes. The purpose of these types is to
distinguish between equal positions with different history. By transferring the search
tree into our implementation of a search DCG, less memory is needed, since only the
roots of equal subtrees are duplicated. Furthermore, less search is needed, since the
DCG contains fewer nodes than the tree. It is shown that our algorithm is hardly
less efficient than other, not entirely correct DCG algorithms in terms of numbers
of nodes searched. One drawback of our solution is the cost of finding the node to
be expanded, in the case that many transpositions occur. We are convinced that the
advantage of solving the GHI problem outweighs this drawback.

6.4 Future research

In this section several recommendations for future research on the trade-off between
memory and search are given.



110 Chapter 6. Evaluations and conclusions

6.4.1 More memory and less search

This subsection provides some ideas for future research on af search in combination
with a transposition table. The idea of using an n-ply principal variation in an
entry, instead of only the best move (cf. subsection 2.7.3), seems worthy of further
investigation. Based on the experiments concerning «/f search with a transposition
table (cf. Chapter 2) it is advised to concentrate on using additional information
affecting the number of cut-offs generated by bound values.

A second recommendation is to store the best n moves with their respective
values (exact values, upper bounds, or lower bounds) in an entry, instead of only
storing the best move.

As a third recommendation it may be worthwhile investigating whether an entry
1s still effective in the table. To this end we store in a transposition-table entry the
last time the position from this entry has been read in the search®, and we use this
stamp for the decision what to do when a collision occurs.

The transposition table can also be used to store results of partial game boards.
when using partition search (Ginsberg, 1996). After a certain number of moves played
in the game of domineering, the board is usually divided into separate (and smaller)
regions. The search time will decrease considerably if the results of these regions can
be found in the transposition table. In this case it is not sufficient to store only the
values of win and loss in the table, since it has to be known by what margin a player
can win a region (Conway, 1976; Berlekamp, 1988).

6.4.2 Less memory and more search

This subsection lists some ideas for future research on modifications of the pn-
search algorithm (or other best-first search algorithms), decreasing the need for
memory. The fraction function used in Section 4.2 works well. Still, it would be
interesting to investigate whether other fraction functions perform even better. After
every initialization of a most-proving node in the first-level tree, pn? search deletes
the second-level tree. If the next most-proving node is one of the children of the
previously expanded node, then the second-level tree is recreated. Therefore, it could
be advantageous to store the last N second-level trees in a cache to reduce this
overhead, a proposal already suggested by Schaeffer (mentioned by Allis, 1994).

The pn’-search algorithm can be seen as a pn-search algorithm with another
pn search for evaluation. Other combinations are worthwhile to be investigated,
such as the combination of pn search and a3 search, leading to two variants: (1) use
the pn-search algorithm with a/ search for evaluation, and (2) use the af algorithm
with pn search for evaluation. The first variant can be used e.g., in a chess tactical
analyzer: pn search uses afl search at the leaves to get a more accurate evaluation.
The second variant can be used e.g., in a chess program: a (positional) af search
uses pn search at the leaves to check for forced mates.

1'We note that this is a method different from time stamping, where the last time a position has
been written into an entry is stored.



6.4. Future research 111

6.4.3 Proof-number search

In this subsection we give two recommendations for improving pn search as it is used
in the game of chess.

First, pn search often finds a longer mate than the optimal shortest one. If it
is desired to urge pn search to find a shorter mate than it does at present, the
following two solutions are suggested: (1) after a mate has been found, try searching
for a shorter mate by only examining nodes in the search tree at a lower depth than
the depth of the shortest mate found so far, or (2) the proof and disproof numbers
in the leaves are initialized to values over unity, say at the depth of the node in
question in the tree; this deters deep searches and hence long mates.

Second, in Chapter 3 it is shown that pn search is a good searcher for mates,
especially when the winning variation contains forcing moves. When considering
extending pn search to other tactical problems, say as a tactical analyzer for gaining
material, a difficulty arises: the condition for suspending search (recognizing the
proved or disproved nature of a node) is not easy to formulate. Temporary gains
should be discarded, and proved or disproved should hold only when the material
gain is permanent. Then and only then the goal is reached and the node should be
evaluated to true, as is a win in standard pn search. A possible definition, worthwhile
testing, is: the gain value of a node is stable if the attacker is to move and has gained
at least the material expected. Since this definition of a stable gain is a heuristic, it
may be incorrect. To prevent unwanted effects, the variation found by pn search can
be checked by an a8 search. The variation can also be used to sort the moves in the
a3 search, resulting in deeper searches than a standard full-width search, because
of the additional cut-offs of pn search.



112 Chapter 6. Evaluations and conclusions




