Chapter 2

The transposition table

This

In this chapter we try to obtain more insight into the first problem statement:

chapter is an updated and abridged version of!

Breuker D.M., Uiterwijk J.W.H.M., and Herik H.J. van den (1994a). Replace-
ment Schemes for Transposition Tables. ICCA Journal, Vol. 17, No. 4, pp.
183-193,

Breuker D.M. and Uiterwijk J.W.H.M. (1995). Transposition Tables in Com-
puter Chess. New Approaches to Board Games Research: Asian Origins and
Future Perspectives (ed. A.J. de Voogt), pp. 135-143. International Institute
for Asian Studies, Leiden, The Netherlands,

Breuker D.M., Uiterwijk J.W.H.M., and Herik H.J. van den (1996). Replace-
ment Schemes and Two-Level Tables. ICCA Journal, Vol. 19, No. 3, pp. 175-180,

. Breuker D.M., Uiterwijk J.W.H.M., and Herik H.J. van den (1997b). Informa-

tion in Transposition Tables. Advances in Computer Chess 8 (eds. H.J. van den
Herik and J.W.H.M. Uiterwijk), pp. 199-211. Universiteit Maastricht, Maas-
tricht, The Netherlands, and

Breuker D.M., Uiterwijk J.W.H.M., and Herik H.J. van den (1998b). Solving
Domineering. Submitted as journal publication. Also published (1998) as Tech-
nical Report CS 98-05, Universiteit Maastricht, Maastricht, The Netherlands.

which methods exist to improve the efficiency of a transposition table?

In Section 2.1 some important notions and concepts, used throughout the thesis,
are introduced. Section 2.2 explains what transpositions are and why it is important
to recognize them. The concept behind the transposition table is given in Section 2.3.
Section 2.4 lists several data structures suitable for a transposition table. The exper-
imental set-up of our research is given in Section 2.5. Section 2.6 discusses the test
domains. Three series of experiments to improve the efficiency of the transposition

table are presented in Section 2.7. Section 2.8 provides conclusions.

I Thanks are due to the Editors of Advances in Computer Chess 8, the Editor of New Approaches
to Board Games Research, and the Editorial Board of the ICCA Journal for giving permission to

use the contents of the articles in this chapter.

10 Chapter 2. The transposition table

2.1 Notions and concepts

In this section we define several notions and introduce various concepts which we
will use throughout the thesis. The main notions are: game tree, search tree and
search methods.

(Game tree

A game tree is a representation of the state space of a game. In the case of a two-
player zero-sum game, the game tree is an oriented AND/OR tree. A node in the
tree represents a position in the game; an edge represents a move. A sequence of
edges forms a path if each edge shares one node in common with the preceding edge,
and the other node in common with the succeeding edge. The root of the tree is
a representation of the initial position. A terminal position is a position where the
rules of the game determine whether the result is a win, a draw, or a loss. A terminal
node represents a terminal position. A node is ezpanded by generating all successors
of the position represented by the node. A direct successor of a node is termed a
child of the node. Analogously, the direct predecessor of a node is termed the parent
of the node. Nodes having the same parent are termed siblings. A node with at least
one successor is termed an interior node. We note that the root is the only interior
node without a parent.

A game tree is generated by expanding all the interior nodes. This process is
repeated until all unexpanded nodes are terminal nodes. It follows that the game
tree for the initial position is an explicit representation of all possible paths of the
game (Pearl, 1984). Zermelo (1912) was the first person stating that every position
(not necessarily a terminal position) can be theoretically characterized as a win,
a draw, or a loss in the game of chess. The game-theoretic value is the value of
the initial position, given that both players play optimally. A minimal game tree is
defined as a minimal part of the game tree necessary to determine the game-theoretic
value. The game-theoretic value can, in principle, be determined by examining the
complete game tree. Since for most games the game tree (and even a minimal game
tree) is extremely large, this is not feasible in practice. For instance, in chess the
game tree consists of roughly 10*? nodes (Shannon, 1950). Chinchalkar (1996) gives
1.77894 x 10*® as an upper bound and, according to Bonsdorff et al. (1978), N.
Petrovié assumes that the upper bound is approximately 2 x 1043,

Search tree

When the game tree is too large to be generated completely, a search treeis generated
instead. This tree is only a part of the game tree. The root represents the position
under investigation, and all other nodes of the search tree are generated during the
search process. The nodes which do not have children (yet) are termed leaves. Leaves
include terminal nodes and nodes which are not yet expanded.

The depth of a node in a tree is zero for the root, and one plus the depth of its
parent otherwise. A node P with a smaller depth than a node @) is an ancestor of

2.1. Notions and concepts 11

node @ if node P is on the path from the root to node @. In this case, node @ is
a descendant’ of node P. A subtree of a tree is formed by a node together with all
its descendants. The depth of a tree is equal to the largest depth of all leaves, often
counted in plies. A ply can be viewed as a half move (a move by one of the two
players). The term ply was introduced by Samuel (1959). A path from the root to
a leaf is called a wvariation. Leaves are evaluated (given a value) with the aid of an
evaluation function. A principal variation is a sequence of moves where both players
play optimally, according to the evaluation function used.

The order in which the nodes of the search tree are generated is defined by the
type of search method.

Search methods

Several search methods have been developed. They fall into three categories®: (1)
depth-first search algorithms, (2) breadth-first search algorithms, and (3) best-first
search algorithms.

In depth-first search algorithms the root is expanded and one of its children
is chosen for further investigation. If the node chosen is not a terminal node, the
node is expanded and again one of its children is chosen for further investigation. If
the child chosen is a terminal node, one of the node’s siblings is chosen for further
investigation. If all children have been investigated, one of the siblings of the parent
is chosen for further investigation, and so on. This process is repeated throughout
the whole tree. In summary, the children are expanded before the sibling nodes. In
Figure 2.1 a search tree of depth three is depicted. For all AND/OR trees/graphs
in this thesis white squares represent OR nodes (positions with the first player to
move), and black circles represent AND nodes (positions with the second player to
move). As an aid to the reader we mention that oR nodes can be seen as playing
positions with White to move (WTM), with one or two selected strategies in mind;
AND nodes as playing positions with Black to move (BTM), in which case White has
to be prepared for all countermoves. The numbers represent the order in which the
nodes are generated with depth-first search.

An advantage of depth-first search is that it may find a solution rather quickly.
However, a disadvantage is that this method often spends much time exploring
unfruitful paths. An example of a depth-first search algorithm is af search (Knuth
and Moore, 1975).

In breadth-first search algorithms, first the node representing the initial state is
expanded. Then one of the leaves of the next level is chosen for further investigation.
If it is not a terminal node, it is expanded. Thereafter, the next leaf on this level
is chosen for further investigation. If all the leaves on this level have been chosen,
one of the leaves of the next level is chosen for further investigation. This process
is repeated throughout the whole tree. In summary, the children are expanded after

2We note that a parent is a special case of an ancestor, and a child is a special case of a
descendant.

3Here we split the brute-force search into two categories, effectively creating three categories
instead of the two mentioned in Section 1.2.

12 Chapter 2. The transposition table

Figure 2.1: A depth-first traversal of a search tree.

the sibling nodes. This is illustrated in Figure 2.2. The numbers indicate the order
in which the nodes are generated with breadth-first search.

Figure 2.2: A breadth-first traversal of the search tree of Figure 2.1.

An advantage of breadth-first search is that the first solution found will be the
solution with the shortest path. A major disadvantage is that it requires a large
amount of memory to store all the nodes of the tree: a node is not needed (and does
not have to be preserved in memory any more) after its subtree is expanded, but
since breadth-first search expands the nodes one level after another, all nodes have
to be kept in memory. Depth-first search first expands all the children of a node,
and therefore a chosen node is not needed (and does not have to be preserved in
memory any more) as soon as one of its siblings is chosen for expansion.

Finally, best-first search combines the advantages of both depth-first search and
breadth-first search. At each step of the search process, the most promising path
(according to some criterion) is expanded. Usually what happens is that some depth-

2.2. Transpositions 13

Figure 2.3: A best-first traversal of the search tree of Figure 2.1.

first searching occurs when the most promising branch is explored. Eventually, if the
path looks less promising, one of the lower-level branches will be explored. However,
search at the old branch is only suspended, and the search can return to it whenever it
seems necessary. An example of a best-first search algorithm is proof-number search
(Allis et al., 1994). A best-first traversal is depicted in Figure 2.3. The numbers
indicate a possible order in which the nodes might be generated.

Plaat (1996) states that the border between best-first search algorithms and
depth-first search algorithms is not as clear as shown above. Plaat et al. (1996) give
a new formulation of the SSS* algorithm (Stockman, 1979), based on the af algo-
rithm. Furthermore, they present a framework, termed MTD(f), that facilitates the
construction of several best-first fixed-depth game-tree search algorithms, based on
the depth-first minimal-window a3 search, enhanced with storage.

2.2 Transpositions

When searching for a move, game programs build large search {rees. Since a position
can sometimes be arrived at by several distinct move sequences, the size of the search
tree can be reduced considerably if the results of a position previously encountered
remain available. The results can be stored in a large direct-access table, called a
transposition table (Greenblatt et al., 1967; Slate and Atkin, 1977). A closer inspec-
tion shows that the search tree then can be considered as a search graph, due to the
transpositions. As an example we provide the chess position of Figure 2.4. It can be
reached via the distinct move orders 1. e4 /N6 2. {/N\e3, and 1. Hc3 H\f6 2. e4d.
To complicate matters, the following sequence of seven plies, 1. /N3 HNI6 2. {HNe3
Ng8 3. ed N6 4. {Ngl, also leads to the same position.

Assume that the position of Figure 2.4 appears somewhere in the search tree.
After examining the position, a best move is found together with its score, based on
a subtree of a certain depth. Since it is possible that this position exists elsewhere in

14 Chapter 2. The transposition table

Figure 2.4: A BTM position that can be reached by distinct move orders.

the tree, the relevant information of the position is saved in the transposition table.
The relevant information includes the score of the position, the best move, and the
depth to which the subtree was searched. Adhering to a8 search (Knuth and Moore,
1975), the score need not be an exact value, but may be a lower or an upper bound.

Slate and Atkin (1977) already remarked that, for chess, “Strictly speaking, po-
sitions reached via different branches are rarely truly identical, because the 50-move
and three-time repetition draw rules make the identity of a position dependent on
the history of moves leading to that position. This effect is small, and we decided to
ignore it.” However, ignoring the history of a position can give an incorrect result.
This is known as the graph-history-interaction (GHI) problem, of which a solution
is presented in Chapter 5. Up to Chapter 5 we concur in ignoring the history of a
position.

2.3 A transposition table

2.3.1 Hashing

In the ideal case one would preserve every position encountered in a search pro-
cess, together with its relevant information*. However, the memory required usually
exceeds the available capacity of most present-day computers. Therefore, a trans-
position table is implemented as a finite hash table (Knuth, 1973). A position is
converted into a sufficiently large number (the hash value) by using some hashing

4In chess, the side to move, castling rights and en-passant status are all part of the description
of a position.

2.3. A transposition table 15

method. The most popular method used by game programmers is described by Zo-
brist (1970).

Hashing in chess

In chess there are twelve different pieces (Pawn, Knight, Bishop, Rook, Queen, King
for both colours) and 64 squares. For any combination of a piece and a square a
random number is generated. In addition, four unique random numbers are generated
for castling rights, eight for en-passant rights, and one for changing the side to move.
Thus, in total 781 (12 x 644448+ 1) unique numbers are available. The hash value
for a position is calculated by doing an exclusive-or (XOR) of the numbers associated
with the piece-square combinations of that position. If applicable, the castling and
en-passant numbers are included too. This way of calculating a hash value has two
advantages.

1. The XOR operation is a fast, bitwise operation.

2. The hash value can be updated incrementally. The hash value for a position
resulting from some move can simply be obtained by doing an XOR between
the hash value of the old position and the two numbers associated with the
piece-fromSquare and the piece-toSquare of the move involved?®.

Warnock and Wendroff (1988) implemented in their program LACHEX a hashing-
algorithm method used less frequently, based on the theory of error-correcting codes.
Their hashing set is constructed from a Bose-Chaudhuri-Hocquenghem (BCH) code
(MacWilliams and Sloane, 1977). The only other program we know which uses this
method is ZUGZWANG (Feldmann, 1993). The method is not widely used; for details
we refer to Warnock and Wendroff (1988).

Hashing in domineering

(For a description of the domineering game we refer to subsection 2.5.2.) For any
occupied square on a board a unique random number is generated. (It is irrelevant
whether a square is occupied by a vertically or horizontally placed domino.) So for
the standard (8x8) board 64 unique numbers are sufficient. No random number for
changing the side to move is needed, since 1t 1s impossible to have two equal positions
with different players to move for the same starting player. The hash value of a
position is calculated by doing an XOR of the numbers associated with the occupied
squares. The hash value for a position resulting from some move is obtained by doing
an XOR between the hash value of the old position and the two numbers associated
with the squares of the move involved.

50ne additional XOR is needed for changing the side to move. When capturing, castling or en
passant is involved, one or a few additional XORs have to be applied.

16 Chapter 2. The transposition table

Hash value and hash key

Figure 2.5 illustrates how the hash value is generally used. If the transposition table
consists of 2" entries, the n low-order bits of the hash value are used as a hash index.
The remaining bits (the hash key) are used to distinguish among different positions
mapping onto the same hash index (i.e., the same entry in the transposition table).
Therefore, the total number of bits should be sufficiently large (Hyatt et al., 1990).
For instance, the chess program CRAY BLITZ uses a 64-bit hash value. For more
details, we refer to subsection 2.4.2.

Hash value
Transposition table

Hash index

n .
Hash key (n bits) (2 entries)

Figure 2.5: The hash value.

2.3.2 The traditional components

For an entry in a transposition table to be effective, it should at least contain the
following information (Marsland, 1986; Hyatt et al., 1990):

key ©: contains the more significant bits of the hash value (see Figure 2.5). The key
is used to distinguish among different positions having the same hash index.

move : contains the best move in the position obtained from a search. This is the
move which either caused a cut-off, or obtained the highest score. The move
is used for the directing knowledge (move ordering).

score : contains the value of the best move in the position obtained from a search.
Since we adhere to af search, the score can be an exact value, an upper bound
or a lower bound. The score can be used to adjust the a and 8 bounds of the
search.

flag : contains information on the score. The flag indicates whether the score 1s an
exact value, an upper bound, or a lower bound.

6Marsland (1986) uses the term ‘lock’.

2.3. A transposition table 17

depth : contains the relative depth of the subtree searched. When doing an n-ply
search from the root and a position is stored at ply m of the tree, the search
depth is n—m. The depth indicates how deep a previously encountered position
has been investigated.

We call a transposition table with these five information fields a traditional table.

During the search, each position encountered is looked up in a table. If the posi-
tion is found, the information stored can be used in three distinct ways, depending
on the contents of flag and depth.

1. The depth still to be searched is less than or equal to the depth retrieved from
the table and the retrieved value is an exact value. The position does not have
to be searched: the search value is retrieved from the table”. Usually, the best
move is also retrieved from the table, and used for determining the principal
variation.

2. The depth still to be searched is less than or equal to the depth retrieved from
the table and the retrieved value is not an exact value. The retrieved value can
be used to adjust either the a value (if the retrieved value is a lower bound)
or the 3 value (if the retrieved value is an upper bound). If this causes a to
be greater than or equal to 3, then a cut-off occurs and the position does
not have to be searched. Otherwise, the retrieved move can be used as a first
candidate, since it was considered best (or at least good enough to yield a
cut-off) previously.

3. The depth still to be searched is greater than the depth retrieved from the
table. In this case only the retrieved move is useful®. It can be investigated
first, since it was considered best for a shallow search, the probability being
high that it also will be best for deeper searches. Thus the move is used to
improve the directing knowledge (move ordering).

When using iterative deepening (Gillogly, 1972; Slate and Atkin, 1977) and
minimal-window search (Pearl, 1980; Marsland and Campbell, 1982; Reinefeld,
1983), transposition tables may significantly reduce the search effort, especially in
chess endgame positions with only a few pieces on the board. Nelson (1985) states
that “In normal situations the move generator is called only about 35% of the time,
the other 65% being handled by the transposition-table move.” Ebeling (1986) con-
cludes that “not using the hash table for moves affects the search size by at least a
factor of two.” Hyatt et al. (1990) show that “these rules let Cray Blitz find about
30% of typical middle-game positions in the transposition table, and well beyond
90% in certain endgame positions.” Berliner and Ebeling (1990) show that the use

71f the depth still to be searched is less than the depth retrieved, the search results may differ
from the results when searching without a transposition table.

8Many heuristics, like aspiration search (Brudno, 1963; Berliner, 1974; Gillogly, 1978), ProbCut
(Buro, 1995), and fail-high reductions (Feldmann, 1997) also use the retrieved value. It is used for
setting the search window.

18 Chapter 2. The transposition table

of transposition tables combined with good move-ordering heuristics may yield that
“on average, the program searches only about 1.4 times the number of nodes that
an af search with perfect move ordering would search.”

In chess, transposition tables are especially useful in positions without Pawns
or with blocked Pawns. As an example, consider problem no. 70 from Fine (1941),
shown in Figure 2.6. At first sight, this seems an easy position. However, White has
only one winning move, which is the unexpected move 1. &b1!. It is possible to
find this move by using knowledge about distant opposition (Fine, 1941), or by doing
a deep (at least 24 ply) search. Without a transposition table this is not possible in
tournament time.

Figure 2.6: A wTM position with blocked Pawns.

For instance, assuming that both sides have five moves on average at their dis-
posal for each position (an underestimation), the minimal game tree when searching
33 ply consists of some 9 x 10! nodes (~ wl(4/2)] 44 [(d/2)]1 g (Knuth and Moore,
1975), with w = 5, and d = 33). However, Hyatt et al. (1984) show that CRAY BLITZ
searches only about 4 x 10 nodes when searching this position to a depth of 33 ply
(reached in only 65 seconds on a Cray X-MP). The reduction in nodes searched by
CRrAY BLITZ (a factor of more than 200,000) is caused by the transposition table.

Sometimes transposition tables are used to store information about only a specific
part of the position (e.g., the pawn structure, or king safety)?. Since this only replaces
a part of the evaluation function, not reducing the number of nodes searched, it is
outside the scope of our experiments.

9Warnock and Wendroff (1988) use the name search tables when talking about transposition
tables in the broadest sense.

2.4. Implementing a transposition table 19

2.4 Implementing a transposition table

2.4.1 Data structures

Several data structures come to mind for implementing transposition tables (Pronk,
1987; Van Diepen and Van den Herik, 1987). Two main choices exist.

1. A table with a variable number of positions per entry (array of linked lists).
Two advantages of this implementation are (1) the available memory can be
divided flexibly among the entries, and (2) no memory is wasted on empty
entries. Two major disadvantages are (1) the pointers of the linked list (needed
to implement the variable number) take up much memory compared to the
size of an entry position, and (2) more computation is needed to check for the
existence of a position in a chain of the linked list.

2. A table with a fixed number of positions per entry (two-dimensional array).
The advantage of this implementation is that no memory is wasted on extra
pointers. The disadvantage is that memory will be wasted when the search is
shallow and the table is not filled completely.

The disadvantages of a table with a variable number of positions per entry are
more serious than the disadvantage of a table with a fixed number of positions per
entry (Van Diepen and Van den Herik, 1987), leading to the logical choice of the
latter implementation.

A position which needs to be stored in an entry where all positions are occupied
is called an overflow. Overflows can be stored in an overflow area. Two choices for
the overflow area exist.

1. The overflow area is implemented as another table or binary tree. Two disad-
vantages of this implementation are (1) in the overflow area the complete hash
value has to be stored in memory, and (2) many comparisons may be needed
to find a position in the table.

2. The overflow area is in the same table. The overflows are stored using dou-
ble hashing (Knuth, 1973). An advantage of this implementation is that only
one table needs to be used. A disadvantage is that again many comparisons
may be needed to find a position in the table. For an extended review of this
implementation, we refer to Beal and Smith (1996).

On the matter of implementation we distributed a questionnaire among readers
of the ICCA Journal and the newsgroup rec.games.chess.computer (then called
rec.games.chess). In the paragraph below we refer to their responses.

The implementation with double hashing is used by, amongst others, Hyatt
(1994), Stanback (1994) and Weill (1994). Since using an overflow area may cause
more computation to check whether a position exists in the table, a table with one
position per entry, not using an overflow area, is used most frequently (Feldmann,

20 Chapter 2. The transposition table

1994; Uiterwijk, 1994; Wendroff, 1994). Distinguishing between two identical posi-
tions with different side to move can be done in two ways: (1) use two different
transposition tables (one for White and one for Black), or (2) use one transposi-
tion table, and use one additional random number for the player to move, which is
XoRed with the hash value. The latter method is used most frequently (Feldmann,
1994; Hyatt, 1994; Schaeffer, 1994; Uiterwijk, 1994; Weill, 1994; Wendroff, 1994).

2.4.2 Probability of errors

Implementing a transposition table as a hash table introduces two types of error,
identified as early as 1970 by Zobrist. The first type of error (type-1 error) is the
most important one. A type-1 error only occurs when the number of available hash
values is much less than the total number of positions in a game, such as in chess.
In this case, it can happen that two different positions yield the same hash value.
This is a serious error, because when a type-1 error occurs, the information in this
entry will be used for the wrong position and, if so, will introduce search errors.
One way of detecting this error is to store the whole position in the transposition
table. However, in many games this takes up too much space, and is therefore not
feasible in practice. Another way of detecting this error is to test the move suggested
by that transposition-table entry for legality in the position, effectively lowering the
error rate. If the move is illegal, then the table entry must concern another position
than the one being investigated. Note that if the move s legal, the positions still
may differ. The probability of the occurrence of type-1 errors can be lowered by
increasing the number of bits in the hash value.

The second type of error (type-2 error, or clash) occurs when two different posi-
tions map onto the same entry in the transposition table, i.e., the positions have equal
hash indices, but different hash keys. This is known as a collision (Knuth, 1973).
When a collision occurs, a choice has to be made which of the two positions involved
should be preserved in the transposition table. Such a choice is based on a replace-
ment scheme. Several replacement schemes are discussed in subsection 2.7.1. The
probability of the occurrence of collisions can be lowered by increasing the number
of bits in the hash index (thus increasing the number of entries in the transposition
table).

The probability of a type-1 error and the probability of a collision are both
calculated in the same way. The only difference is the number of distinguishable
positions (for a type-1 error this is the number of possible hash values!® and for a
collision this is the number of possible hash indices, i.e., table entries!!).

Let N be the number of distinguishable positions, and M be the number of differ-
ent positions which have to be stored in the transposition table’?. The probability
that all M positions will have different hash values (i.e., the probability that no

10j.e., 2%, where k is the number of bits of the hash value.
Hj.e., 27, where n is the number of bits of the hash index.
12This number is equal to the number of non-empty positions in the transposition table after the

search has been completed, augmented with the number of collisions during the search.

2.4. Implementing a transposition table 21

errors occur) is given by

P(noerrors):(l—%)x(1—%)><~~~><(1—M]\71).

If M is small compared to N, then all cross products can be neglected and we have
the following approximation

1424 +M—-1 _ MM-=1)

P ~1-— 1———-.
(no errors) v 5N
For small positive # we have log(1 —z) & —z, and thus

M(M -1

logP(no errors) —Q.
2N

Thus, it follows that

M(M-—1

P(no errors) e~ 2N
If M is sufficiently large, this formula yields
P(no errors) & eI (2.1)

This result equals the formula given by Gillogly (1989)13.

We note that the problem of calculating the probability that at least one error
occurs (being 1 — P(no errors)), is analogous to the problem widely known as the
birthday paradoz (Feller, 1950), where the probability of at least two persons having
the same birthday in a group of M persons (N being 365) has to be calculated.

The expected number of errors can be calculated as well. Feldmann (1993) derives
the following formula for the expected number of errors (F):

N -1y
E=M-Nx(1-(I).
When N is sufficiently large (which is the case for a transposition table), this formula
can be approximated by

E~M—Nx(l—e %), (2.2)

As an example we consider a program which searches 100,000 nodes per second.
If it plays a game using a total of two hours of thinking time, the number of nodes
searched is 7.2 x 108, Assume that for about 30% of the nodes, an attempt is made
to store them in the transposition table. In the example, this is 216 million nodes.
If the hash value consists of 32 bits, the probability of at least one type-1 error is

_ 216,000,0002
1—e 2x232

which is very close to 1. So a hash value of 32 bits clearly is too small. If we want to
reduce the probability of at least one error to less than 1 percent, Equation 2.1 says
that at least 62 bits are required. When using a 64-bit hash value, the probability
is reduced to about 1 x 1073, In this case, the expected number of type-1 errors for
the example above is about 0.05.

13 The article contains a typing error. The probability given here is correct (Gillogly, 1994).

22 Chapter 2. The transposition table

2.5 Experimental set-up

The transposition-table experiments are performed in the domains of chess and
domineering. The experimental set-ups for both domains are described in the next
two subsections.

2.5.1 The game of chess

For the chess experiments we have developed a test program ALIBABA, being a
simple chess program, designed to be easily reproducible by other researchers'*.
This reproducibility serves to promote a uniform platform for research. The major
components of ALIBABA constitute the remainder of this section, viz. the search
engine, the evaluation function, the move-ordering heuristics, and the transposition

table.

The search engine

The search engine is based on a variant of a3 search: iterative-deepening, minimal-
window, principal-variation search® (Marsland, 1986). Furthermore, ALIBABA uses
aspiration search (Brudno, 1963; Berliner, 1974; Gillogly, 1978). At the start of
each new iteration, the upper bound and lower bound of the window are set to the
value resulting from the previous iteration plus and minus the value of a Pawn,
respectively. If the search fails (the value does not lie within the a8 window), the
window is adjusted to either (—oo, value) when failing low, or (value, +00) when
failing high.

Leaves in the search tree should be “relatively quiescent” when evaluated (Shan-
non, 1950). Not all leaves are quiescent, so they should be further investigated by
a quiescence search. In this search only capturing moves and promotion moves are
considered, except if the King is in check, when all moves must be searched. We
note that in the former case a quiescence search may be terminated early, viz. as
soon as it becomes clear that all moves to be generated will be disadvantageous
(Schriifer, 1989). No other search extensions are used in the experiments in order to
avoid possible search anomalies.

Before executing the principal-variation search at a node in the search tree, it
is checked whether the position represented by the node 1s a draw by stalemate, by
three-fold repetition, or by the 50-move rule, or whether it is a win by checkmate.

14 The full C source code is available by anonymous FTP.
The URL is ftp://ftp.cs.unimaas.nl/pub/software/breuker/alibaba.tar.Z

15We note that the version of principal-variation search as mentioned by Marsland (1986) is
identical to the version of negascout as mentioned by Reinefeld (1989). We use the 1989 reference
instead of 1983, which was the first source of this algorithm, since the algorithm described in
Reinefeld (1983) contains minor errors.

2.5. Experimental set-up 23

The evaluation function

The evaluation function used is simple. It consists of a material part and a posi-
tional one. The material part counts the difference of material between sides. The
positional part is restricted to summing piece-square-table values. During a game,
for every type of piece a 64-square table is maintained. Each table contains positional
values for that piece on every square on the board. Again, we tried to keep things as
simple as possible for the reproducibility. Therefore the positional values are inde-
pendent of the position at the root. The positional part of the evaluation function is
updated incrementally: whenever a move is investigated during the search process,
the positional value of the piece-fromSquare table entry is subtracted from it, and
the value of the piece-toSquare table entry is added to it. Finally, the evaluation
function also serves to detect draws by stalemate, by three-fold repetition and by
the 50-move rule as well as checkmate.

The move-ordering heuristics

In any position, ALIBABA generates only legal moves, excluding pseudo-legal moves,
such as placing or leaving its own King in check. Since the move ordering is im-
portant for the efficiency of the af algorithm the following ordering heuristics are
implemented.

Refutation tables (Akl and Newborn, 1977). For every move in the root position, the
main variation is stored. In the next iteration, moves out of these refutation
lines are tried first.

History heuristic (Schaeffer, 1983; Schaeffer, 1989b). A score for every legal move
encountered in the search tree is maintained. Every time a move is found to be
best in a search, its score is adjusted by an amount proportional to the depth
of the subtree investigated. When ordering moves using this heuristic, moves
with a higher score are considered before moves with a lower score.

In ArLiBABA, the moves are ordered in the following way. The first move to be
considered is the move from the refutation table (if present). Then, if the position
is found in the transposition table (see page 24), the transposition-table move is
the next move to be considered. These moves are followed by capture moves (the
highest-valued piece to be captured first; if equal, then the lowest-valued capturing
piece first). Thereafter follow the promotion moves (ordered by promotion piece; the
highest-valued promotion piece first). The remaining moves are ordered according to
their descending history-heuristic scores. In addition to the move-ordering heuristics
mentioned above, applied immediately after move generation, the root moves are
also ordered during the iterative-deepening search processes.

24 Chapter 2. The transposition table

af} search combined with a transposition table

Whenever a move is investigated in the a3 search, the resulting position is looked up
in the transposition table. If the position is present, and the depth of the examined
subtree is greater than or equal to the depth still to be searched, the information in
the table i1s considered reliable. Therefore, if the score is an exact value, it can 1m-
mediately be used; otherwise, it can be used to update the window bounds (possibly
causing a cut-off). The transposition-table move is always used to order moves (see
page 23).

After a position has been investigated to a certain depth, it is stored in the
transposition table together with the best move (i.e., the move which caused a cut-
off, or the move with the highest score), its score, a flag (denoting whether the score
was an exact value, a lower bound, or an upper bound), and the search depth. During
quiescence search, a position is never stored in the transposition table.

The results of a transposition-table look-up are used at all nodes in the tree. If
a leaf position is present in the table, the transposition-table score is used for the
evaluation. If the score was an exact value, this score is used as evaluation value.
Otherwise, the position is evaluated using the evaluation function. If the evaluation
value is higher than the transposition-table score and the bound is an upper bound,
the evaluation value becomes equal to the transposition-table score (analogously for
the lower-bound score). Since the evaluation function is also used in the quiescence
search, the transposition table is used in the quiescence search as well. Note, however,
that since positions are only retrieved and not stored during quiescence search, their
usefulness is limited during that phase.

In our experiments the transposition table is implemented as a linear array with
one or two table positions per entry. No overflow area is used (see also subsec-
tion 2.4.1). Furthermore, a 64-bit hash value is used!®. More details of the imple-
mentation of a transposition table in plain af search are given in Marsland (1986).

The pseudo-code (based on Marsland, 1986) for the implementation of a trans-
position table in plain af search (in a negamax framework) is given in Figure 2.7.
Details concerning enhancements, move-ordering techniques and quiescence search
are omitted for clarity. The parameters of the function are the current position under
investigation (position), the depth to be searched (depth), and the @ and # bounds
of the search window, respectively. We note that the function Evaluate needs as
parameters the position and the transposition-table information. If a leaf position
is present in the table, the transposition-table score is used for the evaluation (see
above). Furthermore, the function TryToStore attempts to store the search infor-
mation in the transposition table, using a replacement scheme (see Section 2.7.1)
when encountering a collision. The function AlphaBeta returns the best value of the
position under investigation.

161n the experiments the size of the transposition table ranges from 8K to 2048K entries. For
these transposition-table sizes the hash index ranges from 13 to 21 bits.

2.5. Experimental set-up

function AlphaBeta(position, depth, «,)
olda == «
Retrieve(position, ttMove, ttScore, ttFlag, ttDepth)
/* If the position is not found, ttDepth will be —1 and ttMove 0 */
if ttDepth>depth then begin
if ttFlag=ExactValue then return ttScore
elseif ttFlag=LowerBound then a := max(«, ttScore)
elseif ttFlag=UpperBound then 3 := min(3, ttScore)
if a>f then return ttScore
end
if depth=0 then /* Leaf */
return Evaluate(position, ttScore, ttFlag, ttDepth)
if ttDepth>0 then begin /* Examine tt-move first */
newPos := DoMove(ttMove, position)
bestValue := —AlphaBeta(newPos, depth—1, —3, —a)
UndoMove(ttMove, newPos)
bestMove := ttMove
if bestValue>/ then goto Done
end
else bestValue := —oc0
GenerateMoves(movelist, nrMoves)
if nrMoves=0 then
return Evaluate(position, ttScore, ttFlag, ttDepth)
for i:=1 to nrMoves do begin
if movelist[i]#ttMove then begin
a := max(bestValue, a)
newPos := DoMove(movelist[i], position)
value := —AlphaBeta(newPos, depth—1, —f, —a)
UndoMove(movelist[i], newPos)
if value>bestValue then begin
bestValue := value
bestMove := movelist[i]
if bestValue>(3 then goto Done
end
end
end
Done:
if bestValue<olda then ttFlag := UpperBound
elseif bestValue>(then ttFlag := LowerBound
else ttFlag := ExactValue
TryToStore(position, bestMove, bestValue, ttFlag, depth)
return bestValue

end /* AlphaBeta */

Figure 2.7: The af-search function with a transposition table.

26 Chapter 2. The transposition table

2.5.2 The game of domineering

Like chess, domineering is a two-player zero-sum game with perfect information.
The game is also known as crosscram, and as dominoes. It was proposed by Goran
Andersson around 1973 (Gardner, 1974; Conway, 1976). In domineering the players
alternately place a domino!” (2x 1 tile) on a board, i.e., on a finite subset of Cartesian
boards of any size or shape. The game is usually played on rectangular boards. The
two players are denoted by Vertical and Horizontal. In standard domineering the
first player is Vertical, who is only allowed to place its dominoes vertically on the
board. Horizontal may play only horizontally. Of course, dominoes are not allowed to
overlap. As soon as a player is unable to move the player loses. Although domineering
can be played on any board and with Vertical as well as Horizontal to move first,
the original game is played on a (8x8) checker-board with Vertical to start, and this
instance has generally been adopted as standard domineering. According to West
(1996) this size is sufficiently large to be beyond the range of human analysis, and
hence the size is fit for an interesting game.

For the domineering replacement-scheme experiments we have developed the
program DoMi. The search engine is plain af search. The evaluation function is a
two-valued function, only returning the values win and loss.

The move-ordering heuristics

In Dowmr a distinction is made between (1) the mobility, (2) the number of real moves,
and (3) the number of safe moves. Mobility is defined as the number of distinct moves
that a player can make in a position. The number of real moves is defined as the
maximum number of moves that a player can make in a position, provided that
the opponent does not make any move. The number of safe moves is defined as the
maximum number of moves that a player can make from a given position in the
remaining part of the game, irrespective of the moves that the opponent will make.

The mobility, the number of real moves, and the number of safe moves are up-
dated incrementally. During the search, the decrements § of the number of real moves
and the number of safe moves are continuously updated for both players. The four
values are instrumental for a move ordering within the ag search, the heuristic be-
ing: the higher the ordering value, the better the move likely is. The formula for the
ordering value is

ordering value = 0 (real moves opponent) — §(real moves player to move) +
d (safe moves opponent) — 4 (safe moves player to move).

Forward cut-offs

The number of real moves indicates an upper bound of the search-tree depth, and
the number of safe moves indicates a lower bound of the search-tree depth. If the
number of safe moves of the player to move is greater than or equal to the number
of real moves of the opponent after the player has made its move, the move is called

17The markings on the dominoes are irrelevant.

2.6. The test domains 27

a winning move. In this case, no further moves are generated and the search at this
position will be terminated, resulting in a win for the player to move. If the number
of safe moves of the opponent is greater than the number of real moves of the player
to move after the player to move has made 1ts move, the move is called a losing move.
In this case, the move is discarded and the next sibling, if any, will be generated.

af} search combined with a transposition table

The implementation of the transposition table is similar to the implementation given
in Figure 2.7, with two exceptions: (1) ttFlag is always equal to ExactValue (since
only the values win and loss are used and therefore no bound values are possible),
and (2) only the best value and not the best move is stored in the table!®. All
symmetries of the rectangular board are used in DoMI. Whenever a node is inves-
tigated in the search, the resulting position is looked up in the transposition table.
If it is not present, any of the three symmetrical positions (a horizontal, and/or a
vertical reflection) is looked up. In the latter case, if present, the information of the
symmetrical position is used®.

2.6 The test domains

In this section we describe the test domains in which the experiments are performed.

2.6.1 Chess test sets in the literature

Several methods have been used to test the strength of a chess-playing program. In
many cases a test set is used. Previous test sets mentioned in the literature are:

o the Win-at-Chess set of 300 tactical positions from Reinfeld (1958). These
positions serve well to test the tactical ability of chess programs, although the
strongest programs have outgrown the test (Anantharaman et al., 1988);

o the Bratko-Kopec set of 24 positions (Kopec and Bratko, 1982). These po-
sitions are divided into two categories: twelve tactical and twelve positional
positions. The positional positions all have a pawn-lever move (described by
Kmoch, 1959) as their solution. This test suite has two disadvantages: (1) 24
positions are too few, and (2) the test is highly specialized in what it tests;

e a test set consisting of 86 positions, devised by Nielsen (1991). The main
purpose of this test set is to estimate the ELo rating (Elo, 1978) of the program;

181f a position is present in the table, its game-theoretic value (win or loss) is known and no
further search is needed at this point.

19We note that we do not make use of rotation symmetry, because that exchanges the concepts
of horizontal and vertical.

28 Chapter 2. The transposition table

o a large test set of 5551 positions, described by Lang and Smith (1993). Tt con-
sists of roughly 2530 tactical positions, 800 positional positions, 2100 endgame
positions and 110 opening positions. The test set seems very good, but it will
take a long time to run a program on all the test positions. Even if the pro-
gram is allowed to analyze each position for only three minutes (tournament
speed), it will take more than 11 days of computing time. Considering that
a programmer needs to test every modification of the program, we have not
adopted this test set for our research.

Berliner et al. (1991) give a taxonomy of chess positions and have tried to devise
a representative test set. Private communication between Lang and Berliner shows
that great difficulties were encountered in creating such a set and only some twenty
positions have been produced so far (Lang and Smith, 1993).

Finally, it is known (Lang and Smith, 1993) that many commercial companies,
such as Fidelity Electronics and Heuristic Software, and many professional program-
mers, have created their own test sets, but they have rarely published these positions.
Most of these tests are devised to test only one aspect of a chess program. Some
of these tests are published in computer chess magazines, such as Computerschaak,
Modul, and ComputerSchach und Spiele. With the popularity of the Internet nowa-
days, many more test sets (including the ones mentioned above) are available at
several FTP sites. See, for instance, URL ftp://external.nj.nec.com/pub/wds/.

As already evident from above, test sets always have a disadvantage: either the
number of positions is too small to be representative of positions in high-level chess
games, or the number of positions is so large that it will take too much time to test
a program on every position. Anantharaman (1991) mentions three other methods
to test the strength of a chess program.

1. Play a large number of tournament games. The disadvantage is the time it will
take to play a sufficient number of games to obtain a good impression of the
strength of the program.

2. Play matches between two computers, starting from a set of chosen positions,
playing both sides. This approach has been used by, amongst others, Gillogly
(1978) and Schaeffer (1986). According to Anantharaman this will take much
time too, because about 1,000 games are necessary to spot a rating difference
of ten points?°.

3. Marsland and Rushton (1973) have taken 760 positions from a collection of
games between human masters from several strong tournaments. They test
the program using all these positions. Conclusions on the strength of a chess
program are based on the average rank of the move the human master played.
One of the disadvantages is that there is no distinction between minor mistakes

20This is only important if the versions tested do not differ much in strength. If one version is
much stronger (say about 250 points) than the other version, it is not interesting to know whether
it is 240, 250, or 260 points stronger.

2.6. The test domains 29

and major blunders. Another disadvantage is that the possibility that the move
played by the program is better than the human move is not taken into account.

Anantharaman (1991) describes another approach to test chess programs. The
approach was designed to test search heuristics, but can equally well be applied to
test other enhancements of a chess program. The method is used in testing DEEP
THOUGHT and its successor DEEP BLUE. The quality of the test program is measured
using a deeper searching reference program. This reference program is about 300 rat-
ing points stronger than the test program. Anantharaman used circa 3,600 positions
to evaluate the test program. He concluded that comparing the move chosen by the
test program with the move chosen by a human expert is not a reliable method for
evaluating the test program. He showed further that comparing the move chosen by
the test program with the move chosen by the reference program is a better way
for evaluating the test program, correlating well with USCF ratings. Anantharaman
reports that with the described technique the same reliability can be reached within
only 6% to 16% of the time required when using matches between computers.

2.6.2 Our chess test set

Our testing method for chess differs from the methods discussed above. We have
opted to use a sequence of positions derived from actual games as the test set. One
advantage is that the chosen positions will not be biased towards tactical issues,
but will automatically incorporate positional ones. Moreover, the choice also meets
the requirement that successive positions should be related, which is essential when
investigating the effects of clearing the transposition table between moves (see sub-
section 2.7.1). Finally, our goal is not to investigate the strength of the test program,
but to investigate the sizes of the search trees involved.

The chess experiments have been divided into two parts. The first part concerns
middle-game experiments, and the second part endgame experiments. The middle-
game experiments and the endgame experiments are separated to see whether the
results are different, since it 1s known that the benefits from the use of transposition
tables are greater in endgame positions than in middle-game positions (Slate and
Atkin, 1977).

For the middle-game experiments we have chosen positions from all six Kas-
parov games of the Euwe memorial VSB tournament 1994 as our test set. Clearly,
Kasparov, being the World Champion, is a good player, so his games are of high
quality. The opening phase is omitted. We shall only consider middle-game posi-
tions, defined as positions from move 15 onwards where both sides have at least 18
points of material?!. We note that games 1, 2, and 6 terminate when they are still
in the middle game according to this definition. Our final restriction is that only
positions where Kasparov is to move are investigated??, resulting in 94 positions as
a middle-game test set. The positions are given in Appendix A.

21Pawn=1, Knight=3.25, Bishop=3.25, Rook=5, Queen=9. Kings do not contribute.
22This could be interpreted as a bias in the test positions.

30 Chapter 2. The transposition table

For the endgame experiments we have chosen positions of five games, taken
from four instructive endgame books (Fine, 1941; Bouwmeester, 1966; Levenfish
and Smyslov, 1971; Averbakh, 1987). An endgame position is defined as a position
where at least one side has less than 18 points of material. Only the wTM positions
are considered. This results in an endgame test set, consisting of 112 positions.
The positions are listed in Appendix B. The test set includes many different types
of endgame, such as pawn endgames, bishop endgames, rook endgames and queen
endgames. The number of blocked-pawn pairs ranges from zero to four.

2.6.3 The domineering test set

The domineering experiments have been divided into two parts. For the first series
of experiments we have taken the empty standard (8x8) board as the test position.
Next to the goal of finding the game-theoretic value of the test position, we have set
as research goal: deciding which replacement scheme is best.

The second series of experiments concentrates on establishing the game-theoretic
value of domineering, played on non-standard boards. We have investigated rectan-
gular board sizes mxn, with m ranging from 2 to 8, and n from m to 9. The variable
m denotes the number of rows and the variable n denotes the number of columns
of the rectangular board. Contrary to so-called impartial games, such as tic-tac-toe,
were both players always have the same options, domineering is a game in which the
options for both players are not alike. These games are called partizan. For partizan
games it can matter which player starts the game. In the case of domineering, for
square boards (including standard domineering) it is irrelevant whether Vertical or
Horizontal starts, but for non-square boards it does matter. We explicitly refrain
from the rule that Vertical always starts. Of course an mxn game started by Hor-
izontal is equivalent to an nxm game started by Vertical. It thus makes sense to
distinguish four possible outcomes for the various domineering games, denoted by
‘1°, 2, ‘V’, and ‘H’. The meanings are as follows:

1: a first-player win, independent of whether Vertical or Horizontal starts;
2: a second-player win, independent of whether Vertical or Horizontal starts;
V: a win for Vertical, independent of whether Vertical plays first or second;

H: a win for Horizontal, independent of whether Horizontal plays first or second.

2.7 Experiments and results

The literature on transposition tables is mainly tutorial in nature (e.g., Marsland,
1986), with only a few detailed discussions of performance (e.g., Ebeling, 1986; Scha-
effer, 1989b). One frequently cited performance observation is that doubling the
number of positions in the table reduces the size of the search tree. This is an ob-
vious result, since the more information in the table, the greater the probability of

2.7. Experiments and results 31

finding a transposition. Performance analyses of other aspects of transposition ta-
bles, such as which positions to replace, have not, as far as we know, been published
in the literature. This section lists three of our experiments concerning transposition
tables. In subsection 2.7.1 experiments on using replacement schemes are described.
The results have been published before in Breuker et al. (1994a), Breuker et al.
(1996), and Breuker et al. (1998b). Subsection 2.7.2 quantifies the merits of using
the move information and the score information of the transposition table. In sub-
section 2.7.3 several ways of using the additional memory are examined. The results
of the last two sections have been published before in Breuker and Uiterwijk (1995)
and Breuker et al. (1997b).

2.7.1 Comparing replacement schemes

The most common implementation of a transposition table is a large hash table.
Even though this table is usually made as large as possible, subject to memory
constraints, and an overflow area is used, collisions (for which see subsection 2.4.2)
are bound to occur. When a collision occurs, a choice has to be made whether to
replace or to retain the position in the table. This choice is governed by a replacement
scheme. From the literature and from discussions with computer-chess practitioners,
it appears that the most common form of collision resolution is to prefer the results
of deeper searches over shallower ones (Greenblatt et al., 1967; Slate and Atkin,
1977; Marsland, 1986; Hyatt, 1994; Stanback, 1994). This has an intuitive appeal,
but has not been supported empirically. This subsection compares the performance
of seven collision-resolution schemes, the impact of clearing the transposition table
between searches, and the effect of changing the number of positions in the table.

Replacement schemes

Whenever a collision is detected, a choice has to be made whether to replace the
existing position in the transposition table. We examine seven different replacement
schemes, viz. DEEP, NEw, OLD, BiGg1, BiIGALL, TwWoODEEP, TwoBIG1. They are
based on five concepts, as numbered below.

1. Concept Deep (used in scheme DEEP).

The concept Deep is traditional. It is based on the depths of the subtrees
examined for the positions involved. In scheme DEEP at a collision, the position
with the deepest subtree is preserved in the table (Marsland, 1986; Hyatt et al.,
1990). The rationale behind this scheme is that a subtree searched to a greater
depth usually contains more nodes than a subtree searched to a shallower
depth. Therefore, more time was invested in searching the larger tree. Hence,
this value, if retrieved from the table, saves more work (i.e., eliminates a larger
tree).

2. Concept New (used in scheme NEW).
The concept New prefers the last examined position over earlier ones. The

32

Chapter 2. The transposition table

replacement scheme NEW always replaces any position in the table when a
collision occurs. This concept is based on the observation that most transpo-
sitions occur locally, within small subtrees of the global search tree (Ebeling,

1986).

. Concept Old (used in scheme OLD).

The concept Old prefers the earliest examined position over later ones. The
replacement scheme OLD (the opposite of the scheme NEW) never replaces an
existing position with a newer position. This scheme has only been included
for the sake of completeness.

. Concept Big (used in schemes Bia1 and BIGALL).

The concept Big is based on the number of nodes of a subtree. Sometimes a
subtree contains many forcing moves. It also may be potentially well-ordered
(in which case many cut-offs have occurred). In such cases, the depth of the
search tree fails to be a good indicator of the amount of search already per-
formed and therefore potentially to be saved. It then may be attractive to
select, for retention, the position with the biggest subtree rather than the one
with the deepest subtree, going by number of nodes rather than by their depths.
A drawback then is that the number of nodes must be retained as part of each
transposition-table entry, reducing the effective number of positions possible
for a given amount of storage.

This concept is used in two schemes: BiG1 and BiGALL. The former counts a
table position in a transposition table as a single node, the latter as N nodes,
where N is the number of positions searched in order to obtain the information
of the table position stored.

Concept Two-level (used in schemes TWoDEEP and TwoBIG1).

The concept Two-level uses a two-level transposition table (Ebeling, 1986;
Schaeffer, 1994). Such a transposition table has two table positions per entry?3.
For the scheme TWODEEP the subtree of the first table position is larger than
the subtree of the second table position. Upon a collision:

e if the candidate position has been searched to a depth greater than or
equal to the depth of the extant first table position, the first table position
1s shifted to the second table position, and the candidate position 1s stored
in the first table position;

e otherwise, the candidate position is stored in the second table position
(possibly overwriting an existing position).

Thus, the candidate position is always stored, and the less important of the
remaining two positions (in terms of depth of search) is overwritten. We have
also tested the analogous combination of the schemes NEw and BiG1 (further
denoted as TwoBIG1).

23Ebeling (1986) implemented the two-level transposition table in a slightly different way.

2.7. Experiments and results 33

We note that in all replacement schemes in our experiments the decision to overwrite
an entry does not depend on the type of the score (exact value, lower bound, or upper
bound) of the positions involved.

Time stamping

When playing a game, a choice must be made about what to do with the positions
stored in the transposition table during the search from a previous position in the
game. Successive positions in a game are related to one another, and it therefore
may seem best to retain all positions in the transposition table?*. However, these
positions are subject to aging, and will be of little use after a few moves in the
game. Consequently, clearing the transposition table between searches may also seem
attractive, e.g., when the evaluation function between searches is changed.

Instead of physically clearing positions in the transposition table, it may be
preferable to time-stamp them after the completion of each search. A time-stamped
position remains stored in the table until a collision occurs, when it is uncondition-
ally overwritten. While time-stamped but not overwritten, it will still be used for
retrieving information. A position not time-stamped holds information more recent
than any previous search.

Table sizes

Undoubtedly, many experiments have been conducted to test the effect of the
transposition-table size on the number of nodes investigated. In spite of this, there
are few reports in the literature. Ebeling (1986) states: “each doubling in the hash
table size yields only a 7% decrease in the search size.”

Schaeffer (1994) reported a 5% decrease in the number of nodes searched when
doubling the number of positions in the transposition table. It is remarkable that
both authors arrive at effects of the same order of magnitude in spite of employing
different move-ordering techniques.

We have tested the effect of doubling the number of positions in the transposi-
tion tables by conducting the experiments for chess with eight different table sizes,
ranging from 8K to 1024K positions and for domineering with four different table
sizes, ranging from 256K to 2048K positions, each time doubling the number of

positions?®.

The chess experiments

To test the ideas mentioned, the following chess experiments were conducted. The
first series of experiments concerned middle-game positions only. It observed the per-
formance of every combination of the seven replacement schemes (with and without

24We note that if the evaluation function depends on the position at the root of the search
tree, search anomalies can occur if the values of positions from a previous search are retrieved
from the transposition table. In our chess experiments we did not encounter that problem, since in
ALIBABA the evaluation values are independent of the position at the root (cf. page 23).

25We use K as an abbreviation for 1024.

34 Chapter 2. The transposition table

time stamping) and the eight table sizes. The middle-game tests have been con-
ducted on 94 middle-game positions, taken from six games between chess experts
(see Section 2.6). Each position was searched for 3 to 7 ply. For table sizes of 16K,
64K, 256K and 1024K positions 8-ply searches were performed on 44 middle-game
positions taken from the first three games given in Appendix A.

The second series of experiments concerned endgame positions only. It observed
the performance of every combination of the seven replacement schemes (only with
time stamping) and eight table sizes (ranging from 8K to 1024K positions). These
tests have been conducted on 112 endgame positions, taken from five games between
chess experts (see Section 2.6). Each position was searched to a depth of 10 ply.

The domineering experiments

In the first series of experiments five replacement schemes have been compared.
From the chess experiments it will be evident (as expected) that the scheme OLD
is not a good candidate for practical use (cf. page 36), since it uses by far more
nodes than all other replacement schemes considered. Therefore, scheme OLD is
not considered for the domineering experiments. Further, it will be shown that the
differences between schemes Big1 and BIGALL are marginal in chess (cf. page 36).
Therefore, for the domineering experiments we decided to drop scheme BIGALL.
Thus, the following five replacement schemes are considered: TwoBiG1, TWODEEP,
Big1, DEEP and NEwW. As mentioned before, the experiments are performed with
four different transposition-table sizes, ranging from 256K to 2048K positions.

For the second series of experiments we have used the best replacement scheme
(TwoBIG1) found from the first series of experiments together with a transposition
table of 2048K positions. All boards with m#n are investigated twice: (1) with the
first player moving vertically, and (2) with the first player moving horizontally.

The performance metric

As the measure for quantifying the search effort in the chess and domineering experi-
ments we use the number of all nodes investigated, i.e., the sum of the interior nodes
and the leaves. The complete results of all experiments are listed in Appendix C.
A few typical results are graphically illustrated in this section. When comparing
the replacement schemes for each table size the number of positions has been kept
constant. This implies that the three Big schemes (Big1, BiIGALL, TwoBIG1) use
slightly more memory than the other schemes because each table position has one
additional field (to store the information about the size of the subtree searched). Tt
is claimed that these minor differences do not affect the interpretation of the results.
Further, we note that the two-level schemes (TwoB1G1, TWODEEP) have half the
number of entries compared to the other five schemes.

2.7. Experiments and results 35

The chess middle-game experiments without time stamping

Figure 2.8 shows the middle-game results for the seven replacement schemes using
7-ply searches without time stamping. The graph plots the number of nodes inves-
tigated (in millions) as a function of transposition-table size. The number of nodes
is the sum of the nodes investigated for the 94 test positions.

220 T T T T T T
TwoBigl ——
TwoDeep -+--
210 | Bigl -8--- 7
BigAll ~x-
Deep &
200 e New -*-- 7]
2 A Old -o--
Z N N
S 10F o % .
£
- 180 N
Q -,
< o
o
S 1o}
2 N
ks
= 160
o)
=]
2
£ 150
=
b4
140
130
120 Il Il Il Il Il Il
8 16 32 64 128 256 512 1024

Table size (in K positions)

Figure 2.8: Comparing replacement schemes in the chess middle game
(without time stamping, 7-ply searches).

The following trends seem to be evident.

e As the table size increases, the number of nodes searched tends to level out
to a constant. In other words, at some point, possibly before 1024K in our
case, no significant gains may be hoped for by increasing the table size. This
is caused by the larger percentage of tree nodes that can be retained in the
transposition table: the probability of harmful collisions (i.e., collisions that
cost many nodes) then greatly decreases. At a certain point the transposition
table is sufficiently big to hold the entire search tree.

e As the table size increases, the spread between replacement schemes shrinks.
For table sizes from 512K upwards, the spread is only around 3%, whereas the
smallest practicable size, 8K, suggests a spread of no less than 21% between

36 Chapter 2. The transposition table

the best (TwoBIG1) and worst (OLD) scheme. This is a consequence of the
argument above.

e The two-level-table schemes outperform those with one level only. For most
data points, TwoBIG1 is better than TWODEEP.

e The schemes OLD and NEW are worse than the other three one-level-table
schemes. This can be explained by observing that OLD and NEW do not take
into account the amount of work done to investigate a position.

e There is hardly any difference between the schemes Big1 and BiGALL.

e Our data for small table sizes (8K to 64K) confirm Ebeling’s (1986) statement,
based on 10 positions, that TWoDEEP “reduces search times by 5 to 10% for
middle game positions” when compared with DEEP.

It is important to observe that the deeper the search performed, the larger the
transposition table should be. Beyond 256K positions for a 7-ply search, perfor-
mance levels off; there is little further to gain. However, some programs can search
considerably deeper than 7 ply. They may not have sufficient memory to allow a
transposition-table size large enough to reach the point where doubling the num-
ber of positions in the table has a limited benefit. The shape of the lines in Fig-
ure 2.8 may provide some insight into the effect of transposition-table performance
for deeper searches. For example, assuming that searching one ply deeper increases
the tree size by a factor of about 4 (Thompson, 1982; Junghanns et al., 1997) a
9-ply search might build a 16 times larger tree than a 7-ply search. The 9-ply results
for 256K positions can be approximated by using the 16K (25166K) data point of the
7-ply results. This shows TwoBIG1 to be a clear winner.

If we use a 1% reduction in node counts as a criterion for the usefulness of
doubling the number of positions in the transposition table, then we obtain from
Figure 2.8 for 3, 4, 5, 6, and 7-ply searches in the middle game the following suggested
table sizes: <8K, 16K, 32K, 32K, and 256K positions, respectively.

The chess middle-game experiments with time stamping

The same experiments as above were performed, the only difference being time
stamping. This means that each time after a search was completed, the table posi-
tions were given a time-stamp, as opposed to clearing the table positions. Thereafter,
the next position in the game was searched. Thus the results of a previous search
could still be used. Figure 2.9 shows the results of these experiments.

Comparing this figure to Figure 2.8, the following trends seem to be evident.

e The shapes of all graphs are similar in the Figures 2.8 and 2.9.

e The relative order of merit of the replacement schemes seems to be invariant
for time stamping; whether one time-stamps or clears the transposition tables
between moves, TWoBIG1 appears to have a persistent edge.

2.7. Experiments and results 37

220 T T T T T T
: TwoBigl ——
TwoDeep -+--
210 | Bigl -8--- 7
S BigAll -
Deep -+~
200 - 0\ New -¥-- 7
> [old -~
£ \\ ‘\
£ 190 .
8
= 180 o
o
<
o
g 10
5}
k
= 160
)
1
2
s 150
=
b4
140
130
120 Il Il Il Il Il Il

8 16 32 64 128 256 512 1024
Table size (in K positions)

Figure 2.9: Comparing replacement schemes in the chess middle game
(with time stamping, 7-ply searches).

Time stamping has a slight performance benefit. The savings with time stamping
are some 2%. Therefore, it can be recommended since it only requires one additional
bit per table position and requires little additional computation.

As mentioned on page 33, 8-ply searches have been performed on middle-game
positions for table sizes of 16K, 64K, 256K and 1024K positions, again with and
without time stamping. The results are given in Appendix C. Assuming a ratio of
four in search size between subsequent ply depths, the 7-ply results for table sizes of
16K, 64K and 256K positions should be scalable to the 8-ply results for table sizes of
64K, 256K and 1024K positions, respectively. Inspection of the results verifies this.
In other words, the 7-ply search conclusions given above are confirmed by the 8-ply
search results, in particular the conclusion that the two-level schemes outperform
those with one level.

The benefit of a transposition table in chess middle games

Figure 2.10 shows the relation between the benefit of using a transposition table
and the search depth for all 94 middle-game positions. The data are shown for a
transposition table of 1024K positions and replacement scheme TwoBIG1, using

38 Chapter 2. The transposition table

time stamping. The search size without a transposition table is 1.

1.1 T T T T

Search size ratio

0.2 1 1 1 1

5 6
Search depth (in ply)

Figure 2.10: Using a transposition table in the chess middle game
(with time stamping, scheme TwoBI1G1, 1024K positions).

For this example we see that, limiting ourselves to a 3-ply search in middle-game
positions, the use of a transposition table with time stamping is even counterpro-
ductive in that it prolongs the search. The probable cause is an unfavourable move
ordering, caused by a poor best-move suggestion from the transposition table. How-
ever, it 1s reassuring that the use of transposition tables is definitely advantageous
at more realistic search depths of over 3 ply.

Ebeling (1986) concludes that “not using the hash table for moves affects the
search size by at least a factor of two.” The graph confirms this factor for searches of
6 ply and deeper. It is noted that transposition tables reduce the search considerably
in many other domains, such as domineering (cf. page 40) and also in single-agent-
search problems, such as sokoban (Junghanns and Schaeffer, 1997).

The chess endgame experiments with time stamping

Figure 2.11 shows the endgame results for the seven replacement schemes using 10-
ply searches with time stamping. The graph plots the number of nodes investigated

2.7. Experiments and results 39

(in millions) as a function of transposition-table size. The number of nodes is the
sum of the nodes investigated for the 112 test positions.

1600 T T T T T T
h TwoBigl ——
TwoDeep -+--
) Bigl -©---
1400 o, BigAll -
Deep —&-
New —x--
Old -o--
1200 1
~\<>\\
1000 }

800

600 -

Number of nodes searched (in millions)

400

200 1 1 1 1 1 1
8 16 32 64 128 256 512 1024
Table size (in K positions)

Figure 2.11: Comparing replacement schemes in the chess endgame
(with time stamping, 10-ply searches).

From this graph it follows that the conclusions given for the middle-game exper-
iment also hold for the endgame, with one exception. In middle-game positions it is
clear that the concept BiG works better than the concept DEEP: schemes Big1 and
BiG ALL search fewer nodes than scheme DEEP. and scheme TwoBiG1 fewer nodes
than scheme TwWoDEEP. The difference between the two concepts has disappeared
in the endgame. This is explained as follows. If a subtree contains many forcing
moves or is well-ordered, cut-offs occur. Since in the middle game the mobility of
each player is higher than in the endgame, such pruning will on average cause larger
savings in middle-game positions than in endgame positions. Therefore, the size of
search trees of equal depth will vary more in middle-game positions than in endgame
positions. The concept DEEP does not have a preference for any of two such sub-
trees, whereas the concept BiG has a preference for the largest subtree. Thus, in the
middle game the size (as compared to the depth) of the search tree investigated will
be a better characteristic measuring the work performed than it is in the endgame.

If we again use a 1% reduction in node counts as a criterion for the usefulness of

40 Chapter 2. The transposition table

doubling the number of positions in the transposition table, then we obtain for 3, 4,
5,6,7,8,9, and 10-ply searches in the endgame the following suggested table sizes:
<8K, <8K, <8K, 32K, 64K, 512K, >1024K, and >1024K positions, respectively.

Solving domineering

From preliminary experiments it was obvious that standard 8 x8 domineering could
not be solved in a reasonable amount of time without using a transposition table
(Fotland, 1997). Using a transposition table, we solved the game. It appeared to be
a first-player win. Later on, we were informed that this result was independently
found by Morita (1997).

In Figure 2.12 the results for the five replacement schemes in domineering are
given. Detailed results are listed in Appendix C. The graph plots the number of nodes
investigated (in millions) to solve the standard game as a function of transposition-
table size.

4000 T T
TwoBigl ——
s TwoDeep ~+--
3600 - o Bigl -5 -
"~ Deep ~x-
S New -&-
3200 | Sl b
Z T
E 2800 - T 1
g Tl
3 T
£ 2400 - S 4
Q RN
3 Tl
2 Tal
£ 2000 T -
2 ~
= ~_
e ~._
=} n . ~
g 1600 F oo R T b
© N
g : T
= h
Z. L
1200
800
400
256 512 1024 2048

Table size (in K positions)

Figure 2.12: Comparing replacement schemes in domineering.

It 1s noted that the conclusions from the domain of chess also hold in the do-
main of domineering and are even more pronounced: two-level replacement schemes
work much better than one-level schemes. Furthermore, the concept Big shows more
improvement over the concept Deep than in chess.

2.7. Experiments and results 41

Solving domineering for non-standard boards

Table 2.1 gives the results for the second series of experiments. The numbers indicate
the real number of nodes investigated. The scheme used is TwoBiG1 with 2048K
positions. In the first column the board size is depicted. The second column gives
the game-theoretic value, with ‘1°, ‘2’ ‘V’ and ‘H’ as defined in subsection 2.6.3.

Size | Res Nodes Size | Res Nodes Size | Res Nodes
2x2 | 1 1 3x7 | H 77 5x8 | H 30,348
2x3 | 1 2 3x8 | H 74 5x9 | H 177,324
2x4 | H 13 3x9 | H 99 6x6 | 1 17,232
2x5 | 'V 15 4x4 | 1 40 6x7 |V 302,259
2x6 | 1 14 4x5 | V 87 6x8 | H 3,362,436
2x7 | 1 17 4x6 | 1 1,327 6x9 | V 18,421,911
2x8 | H 67 4x7 | 'V 1,984 <7 |1 408,260
2x9 | 'V 126 4x8 | H 12,024 7x8 | H 12,339,876
3x3 | H 1 4x9 | V 45,314 <9 | H 320,589,295
3x4 | H 10 5xb | 2 604 8x8 | 1 441,990,070
3xb | H 19 5x6 | H 1,500 8x9 | V 70,918,073,509
3x6 | H 40 5x7 | H 13,584

Table 2.1: Game-theoretic results of domineering for various board sizes.

Our results fully agree with the results published earlier by Berlekamp and
coworkers as far as investigated by them (see Berlekamp et al., 1982b; Berlekamp,
1988; Guy, 1991). They provide complete analyses for boards with a size of 2xn
(2<n<T), 3xn (3<n<5b), and 5x5. We remark that games with a game-theoretic
value ‘1’, ‘2°, ‘H” and ‘V’ match their characterizations of fuzzy, zero, positive and
negative games, respectively. By using a straightforward af algorithm, returning
only whether a position is a win or a loss, we did not keep track by what difference
a position 1s won or lost. Hence, 1t is impossible to provide a detailed comparison
with their analyses.

Another subset of our results coincide with the results obtained previously by
Fotland (1997), who did his investigations several years ago. Fotland also used a
straightforward af algorithm plus a large transposition table. He did not solve the
8x8, and the mx9 (5<m<8) boards. Our program DoMI never investigated more
nodes than Fotland’s program; DoMI has a more efficient node investigation than
Fotland’s program by a ratio of up to 10 for the larger boards.

In Table 2.1 we may discern several patterns of exponential growth with the
board size, e.g., the nxn series, the mxn series with fixed m, etc. The results
suggest that the ratio always grows exponentially with the board size. Since the 8x9
board took more than 600 hours to be solved, we did not investigate the 9x9 board.
It is interesting to note that of all boards considered the 5x5 board is the only one
in which the second player wins.

42 Chapter 2. The transposition table

2.7.2 Quantifying the merits of move and score

Although it is evident that the use of a transposition table reduces the search effort,
two open questions still exist. First, how big is the overall reduction? And second,
which information has the largest impact on the reduction? This subsection consists
of two parts. The first part compares storing the best move with storing the value
of the best move. The second part compares storing the bound values for minimal-
window search with storing the ezxact values?®.

From the components mentioned in subsection 2.3.2 it follows that a transposition
table is used for two reasons: (1) the score is used for establishing the value of the
position, and (2) the retrieved move is used for move ordering. In the first case the
value is either an exact value, and this position does not have to be re-searched, or
a bound value, in which case either the o value or the 3 value might be adjusted?®”.

We have investigated the merits of these individual components in order to obtain
more insight into the way a transposition table helps to reduce the search effort. This
information may help in devising more efficient transposition-table schemes and may
deliver guidelines about what additional information can be useful. For investigating
the merits of move and score we have performed six experiments.

1. Search without a transposition table.
2. Search with a traditional transposition table, without score.
3. Search with a traditional transposition table, without mowve.

4. Search with a traditional transposition table, without move, only storing and
using the score information if the score is an ezact value.

5. Search with a traditional transposition table, without move, only storing and
using the score information if the score is a bound value.

6. Search with a traditional transposition table, with move and score, storing
and using the score information both if the score is an ezact value or a bound
value (i.e., use the transposition table fully).

The experiments 1 and 6 are performed to obtain upper and lower bounds.

Results of the merits of move and score

As the measure for quantifying the search effort we use the number of all nodes
investigated, i.e., the sum of interior nodes and leaves. The test set used for the
experiments consists of 18 consecutive wTM middle-game positions taken from the
game Kasparov-Short, Amsterdam 1994, and 21 consecutive WT'M endgame positions
taken from the game Rabinovich-Romanovsky, Leningrad 1934 (see Appendix A and

26 We note that the experiments are only performed in the chess domain, since in the domineering
experiments no moves and no bound values are stored.

27 Obviously, when the depth still to be searched is greater than the depth in the transposition
table, the score from the transposition table is not used.

2.7. Experiments and results 43

B). Both games were played by human experts. The 18 middle-game positions have
been searched to a depth of 8 ply, and the 21 endgame positions to a depth of 10 ply.
The replacement scheme used for all experiments is TwoBIG1, the scheme which
performs best (see subsection 2.7.1). All experiments have been performed with a
series of transposition tables, ranging from 8K positions to 256K positions, since
beyond 256K positions there is little further to gain, as 1s shown in subsection 2.7.1.
Time stamping (see page 33) is used. The complete results can be found in Ap-
pendix C. The number of nodes are the cumulative results of all 18 and 21 positions,
respectively. The merits of the best move and its score stored in a transposition-table
entry have been examined separately.

Middle-game experiments

In Figure 2.13 the results of the use of a traditional transposition table for the middle-
game positions are depicted. The figure shows the number of nodes investigated as
a function of the transposition-table size. The numbers in the legend refer to the
experiments mentioned on page 42.

900 T T T T
No tt [1] -—
Tt move [2] -+--
800 I Tt score [3] -©--- o
True tt score [4] >
Bound tt score [5] -2
200 - Traditional tt [6] -*--
8 (1
‘§ 600
= [4]
b=y
£ 500]
3} e o
§ “V+<2;"\"“‘"“"“4»»»,
S 400 F &r T e B N |
E
s . 3
5 300 gi1ii‘—'::::;—;&,1,,,,, ,,,,) 7
<) E— Ao 1T
= T T m R R B eeoemmme
2 [6] T T A LT [
;;;;; e I3]
200 - e |
100]
0 1 1 1 1
8 16 32 64 128 256

Table size (in K positions)

Figure 2.13: Comparing move and score in the chess middle game
(8-ply searches).

Figure 2.13 clearly shows that the use of a transposition table (experiment 6) is

44 Chapter 2. The transposition table

very profitable in terms of number of nodes searched compared to searching with-
out a transposition table (experiment 1); a result which was already evident from
the results of subsection 2.7.1. Further, using the field score of a transposition ta-
ble (experiment 3) is more important than using the field move (experiment 2)%8.
This is caused by the minimal-window search: whenever one of the bounds of the
minimal window is updated, its lower bound will be greater than its upper bound,
thereby causing a cut-off. Experiments show that whenever a position is found in
the transposition table, the retrieved value causes a cut-off in about 50% of the
cases??. However, this effect stems fully from bound values (experiment 5). Exact
values (experiment 4) hardly have any effect in this respect. Upon closer investiga-
tion it becomes clear that exact values are used only a few times. Typically, an exact
value 1s encountered tens of times in the transposition table, while a bound value is

encountered tens of thousands of times®C.

Endgame experiments

The results of the experiments on the endgame positions are analogous to the results
of the experiments on the middle-game positions, but they are more pronounced, as
can be seen in Figure 2.14. Moreover, the use of a transposition table is more prof-
itable in endgames than in middle games. We see that the largest (256K positions)
transposition table used in middle games with only the field move (experiment 2)
results in about a 36% node decrease, whereas in the endgame the decrease is about
65%. If in addition score is used (experiment 6), a total decrease of about 68% in
the middle game and about 89% in the endgame is obtained.

2.7.3 Using additional memory

A collision (Knuth, 1973) occurs when two different board positions map onto the
same entry in the transposition table (i.e., they have an equal hash index, but a
different hash value). Regardless of whether the old entry is replaced by the new
one, collisions will have a negative effect on the efficiency of a transposition table,
since one of the two positions will not be present in the table. The probability of
the occurrence of collisions can be lowered by increasing (doubling) the number of
positions in the transposition table. However, at a certain point the doubling is not
profitable any more (cf. subsection 2.7.1). This subsection looks at other ways to use
additional memory, by comparing the use of more information per entry position
with the use of more positions in the table.

28 We note that the results of the experiments depend on the move-ordering mechanism used (for
which see page 23).

29 The minimal window causes the retrieved value to be either a fail low, or a fail high.

30 A1l nodes (except nodes on the principal variation and fail-high nodes) are searched with a
minimal window. Therefore, no exact value is known for these nodes.

2.7. Experiments and results 45

600 ' ' | |
Nott[1] =—
Tt move [2] -+--
Tt score [3] -©--
True tt score [4] -
500 | Bound tt score [5] -4~]
Traditional tt [6] -—* -
E =
=400
E [4]
b=y
(5}
=
Q
5 300 _
5]
3
]
=
kS
5 200 F e f2] |
S I
g R LR
: T e
Hoooooo e [3]
100 & ~——~g,—m\—:-;::::.:;’ TInInininioazosoo. == 1
S U
L ””_7‘[5]
0 I I I I
8 - ~ o 128 256

Table size (in K positions)

Figure 2.14: Comparing move and score in the chess endgame
(10-ply searches).

Additional components

In our search for storing additional information in a transposition-table entry we
have found several suggestions, amongst others made by Schaeffer (1994), Stanback
(1994), and Thompson (1996a). From their suggestions, we mention six additional
components.

date : contains the root’s ply number in the game at the time when the position was
stored®!. Sometimes only a 1-bit date flag is used, stating whether the position
is from an ‘old’ search or not. The date is used for time stamping. A position
will be overwritten by a position with a newer date.

depth : contains the number of ply seen from the root. A position is more important
if it is nearer to the root, since there it has a higher probability of being re-
searched; possible savings are then most likely larger than savings for positions
deeper 1n the tree.

31Feldmann (1996) defines date as the number of conversion moves (irreversible moves) made in
the game.

46 Chapter 2. The transposition table

extenston : contains a Boolean value, denoting if a search extension was done at this
position. The extension criteria of a node may vary (e.g., because the extension
is dependent on the af window), resulting in an extension one time and not
in an extension the other time. The Boolean extension helps to overcome this
problem (which is especially important when doing a re-search).

principal : contains a Boolean value, denoting if this position is part of the principal
variation of a child of the root3?. Positions which are part of the principal
variation of a root’s child are important positions, and may not be overwritten
by other positions.

draw : contains a Boolean value, denoting if the backed-up score of this position is
a proved draw. This is useful for distinguishing between variations resulting in
positions which are real draws, and variations resulting in balanced positions
(which obtain a draw value).

additional bound : instead of storing only a lower bound or an upper bound of the
score, both bounds can be stored in an entry, with separate search depths for
each. This is done by Truscott (1981) in the program DUCHESS.

Presumably, the information contained in these six components will have an im-
pact on the number of nodes searched. However, only very few researchers have
published even provisional results about experiments on these additional compo-
nents. In subsection 2.7.1 we mentioned an experiment testing the use of a 1-bit
date flag (time stamping), concluding that time stamping has a slight edge. In gen-
eral it seems that adding these new components to an entry is not very profitable
(Schaeffer, 1996b).

Storing the additional information described above does not take up much mem-
ory. Most fields need one bit of storage only, since they are Booleans. The choice
for small additional components is made on purpose, since a larger entry results
in a transposition table with fewer entries (assuming the same amount of memory
is available). However, once a critical transposition-table size has been reached not
much is to be gained from doubling the number of positions. Moreover, if the avail-
able memory is less than the memory needed for doubling the number of positions
in the table, it still can be used for storing more information in an entry.

The above considerations have led to the question of how to use additional fields,
taking up more memory than only one bit. Instead of storing the best move (which
can be seen as a 1-ply principal variation) in a transposition-table entry, it may be
interesting to investigate the effects of storing a deeper principal variation in an
entry (Schaeffer, 1996b). This principal variation (PV) can be used to guide the
search. If a position is not present in the transposition table, a good move may still
be available from the n-ply PV information of an ancestor position.

32Note that this is a way to implement the refutation table using the transposition table.

2.8. Chapter conclusions 47

Additional memory

Below we describe a limited set of experiments investigating the effects of storing an
n-ply PV in a transposition-table entry33. The PV information is used as follows. If
a position is found in the transposition table, the corresponding PV is retrieved from
the table. The first move in the PV is used for move ordering and the remainder of
the PV is used in further search. If a position is not found in the transposition table,
and a good move is available from the PV of an ancestor position, then this move is
used for move ordering.

The conditions for the experiments are the same as the conditions mentioned in
subsection 2.7.2. Again, the number of nodes in the Figures 2.15 and 2.16 are the
cumulative results of all 18 and 21 positions, respectively. We have tested the results
of storing an n-ply PV (n = 2...5) in an entry versus storing only the best move (a
1-ply PV). The complete results of the experiments are presented in tabular form in
Appendix C.

Middle-game experiments

In Figure 2.15 the results of the PV experiments on middle-game positions are
depicted. The number of nodes investigated are shown as a function of the
transposition-table size.

Our first observation is that storing an n-ply PV seems hardly worthwhile: the
effects are small and severely dependent on the size of the transposition table. The
explanation for this is that for less than 0.1% of the nodes investigated a position
appears to be absent in the transposition table, whereas a PV from an ancestor
still is available. To give some quantification, it can be seen that with the largest
transposition table (256K positions), storing a 5-ply PV instead of a 1-ply PV wins
roughly 5%, outperforming the 1% gain by simply doubling the number of positions
in the table to 512K (see subsection 2.7.1).

Endgame experiments

The results of the experiments on the endgame positions are analogous to the results
of the experiments on the middle-game positions, as can be seen in Figure 2.16. Here
again, for the largest transposition-table size, the 5-ply PV outperforms the 1-ply
PV, this time by some 12%.

2.8 Chapter conclusions
This chapter has shown that a transposition table (memorizing the outcome of po-

sitions previously analyzed in games, such as chess and domineering) is a useful
technique. The technique has enabled us to solve a large number of different-sized

33We note that these experiments are solely performed in the chess domain, since no moves are
stored in the domineering experiments.

48 Chapter 2. The transposition table

300 T T T T
‘ 1-ply PV ——
R 2-ply PV —+--
NN 3-ply PV -3---
E 4-ply PV -x-
280 |- 5-ply PV -]
z
2
E 260 -
8
=1
Q
<
o
5 240
5}
=]
<
=
)
1
g 220
S
E
=
b4
200
g
180 Il Il Il Il
8 16 32 64 128 256

Table size (in K positions)

Figure 2.15: Storing an n-ply PV in the chess middle game
(8-ply searches).

domineering games, including the standard 8 x8 game. Without a transposition table
this takes a much longer time and can therefore be considered practically impossible.
We have described three series of experiments on the use of a transposition table.
The goal of these experiments was to obtain more insight into the first problem
statement: which methods exist to improve the efficiency of a transposition table?

First, we have tested which replacement scheme performs best. On logical
grounds, one is tempted to conclude that the number of nodes of a subtree (used in
schemes BiG1 and BIGALL) is a better estimate of the work performed (and there-
fore potentially to be saved) than the depth of that subtree (used in scheme DEEP),
especially in positions with a large mobility. The experiments support this logic. In
chess middle-game positions and in domineering the schemes based on the concept
BiG perform better than the schemes based on the concept DEEP. In chess endgame
positions this difference disappears, since the lower mobility then diminishes the dif-
ferences in effects of the two measures. Based on the 7-ply and 8-ply results in chess
middle games, the 10-ply results in chess endgames and the domineering results, we
conclude that a two-level scheme is better than any one-level scheme. Thus it fol-
lows that the most widely used scheme, DEEP, is not best. Based on the conclusions

2.8. Chapter conclusions 49

80 T T T T
b 1-ply PV ——
2-ply PV -+--
75 B 3-ply PV -8--- A
N 4-ply PV -
5-ply PV -&--
70
Z
.2
‘B 65 -
8
=1
£ 60
o
=]
2
& 55t
S
=
—
5
3 50
°©
g
=
b4
45
40
35 1 1 1 1

8 16 32 64 128 256
Table size (in K positions)

Figure 2.16: Storing an n-ply PV in the chess endgame(10-ply searches).

we recommend using the scheme TwoBIG1 as the best replacement scheme for a
transposition table.

Second, it 1s examined which information is more important to store in a
transposition-table entry: the best move in a position, or the score of that move.
It follows that storing the score of a position is more profitable than storing the best
move. This result holds for chess middle-game positions as well as endgame posi-
tions. It was also found that for minimal-window search bound values have a much
larger effect than exact values. This effect, although nowadays expected, contrasts
with the idea for which transposition tables originally were devised, i.e., avoiding
the re-search of positions searched before.

Third, we have tested the effect of storing an n-ply PV (n = 2...5) in an entry,
instead of only the best move (a 1-ply PV). Preliminary results show that a 5-ply PV
may win roughly 5% for the chess middle game, and 12% for the endgame, though
more experiments are necessary to validate the conjecture that it really is profitable
to use additional memory by storing a 5-ply PV instead of increasing the number of
positions in the transposition table.

From the experiments it follows that it is important to choose a good replace-
ment scheme. Further, the available memory can be used to make the transposition

50 Chapter 2. The transposition table

table as large as possible. However, once a critical transposition-table size has been
reached not much is to be gained from doubling the number of positions in the table.
In that case, better ways exist for using the available memory. Instead of doubling
the number of positions in the transposition table, it is better to use the additional
memory by storing more information in an entry, thereby enlarging the entry size.
Based on the above experiments it is recommended to concentrate on storing addi-
tional information which affects the number of cut-offs generated by bound values.

