Chapter 3

The proof-number search
algorithm

This chapter is a slightly adapted version of Breuker D.M., Allis L..V., and Herik H.J.
van den (1994b). How to Mate: Applying Proof-Number Search. Advances in Com-
puter Chess 7 (eds. H.J. van den Herik, 1.S. Herschberg, and J.W.H.M. Uliterwijk),
pp. 251-272. University of Limburg, Maastricht, The Netherlands!.

The second and third problem statement deal with best-first search. In this chap-
ter we therefore present a relatively new best-first search algorithm, called proof-
number search (pn search), which will be used in the experiments addressing the
second and third problem statement.

The basic ideas behind the pn-search algorithm are presented in Section 3.1. Sec-
tion 3.2 lists the pseudo-code of the pn-search algorithm for trees. The experimental
set-up is given in Section 3.3, and the test set is described in Section 3.4. Section 3.5
provides the experiments, of which the results are discussed in Section 3.6. Finally,
Section 3.7 evaluates the experiments.

3.1 An informal description

In this section we present a short overview of pn search, based on Allis (1994). A
detailed description of pn search can be found in Allis et al. (1994).

Proof-number search is a best-first AND/OR tree-search algorithm, and is in-
spired by the conspiracy-number algorithm (McAllester, 1988; Schaeffer, 1990). Be-
fore starting the search, a search goal is defined (e.g., try to reach at least a draw).
The evaluation of a node returns one of three values: true, false, or unknown. The
evaluation is seen from the point of view of the player to move in the root position.
The value true indicates that the player to move in the root position can achieve the

IThanks are due to the Editors of Advances in Computer Chess 7 for giving permission to use
the contents of the article in this chapter.

51

52 Chapter 3. The proof-number search algorithm

goal, while false indicates that the goal is unreachable. A node is proved if its value
has been established to be true, whereas the node is disproved if its value has been
determined to be false. A node is solved as soon as i1t has been proved or disproved.
A tree is solved (proved or disproved) if its root is solved. The goal of pn search is
to solve a tree.

Two variants of creating a search tree exist (cf. Allis, 1994).

1. Immediate evaluation. Each node in the tree 1s immediately evaluated after it is
generated. The tree is built by first generating (and evaluating) the root. Then
at each step a leaf is selected, expanded and all its children are immediately
evaluated.

2. Delayed evaluation. Each node is only evaluated when it is selected, and not
immediately after it is generated. The tree is built by first generating the root
(without evaluation). Then, at each step a leaf is selected and evaluated. If
the evaluation value is unknown, the node is expanded (without evaluating its

children).

The advantage of immediate over delayed evaluation is that in the former variant
more information is available. However, if the evaluation takes much time, it is better
to use the delayed variant, avoiding the evaluation of many nodes that will not be
used for solving the tree. Since, in the standard pn-search experiments described in
this chapter, the evaluation is fast (only checking whether the position is a win, a
loss, or a draw) we use the immediate variant in our further description of pn search.

Like other best-first search algorithms, pn search repeatedly selects a leaf, ex-
pands it, evaluates all its children, and updates the tree with the information ob-
tained from the expansions and evaluations. Unlike most other best-first search algo-
rithms, pn search does not use a heuristic evaluation function in order to determine
a most-promising node. Instead, the shape of the search tree (the number of children
of every internal node) and the values of the leaves determine which node to select
next.

In general, to solve a tree, a number of leaves of the current search tree needs to
be proved or disproved. A set of leaves, which, if all proved, would prove the tree,
is called a proof set. Likewise, a set of leaves, which, if all disproved, would disprove
the tree, 1s called a disproof set. The size of the smallest proof set of the tree is a
lower bound for the number of node expansions necessary to prove the tree, while
the size of the smallest disproof set of the tree is a lower bound for the number of
node expansions necessary to disprove the tree.

In Figure 3.1 an AND/OR tree has been depicted. The numbers to the left of a
node denote proof numbers, while the numbers to the right of a node denote disproof
numbers. A proof number of a node represents the minimum number of leaves which
have to be proved in order to prove that node. Analogously, a disproof number of a
node represents the minimum number of leaves which have to be disproved in order
to disprove that node.

Proved nodes (e.g., node K in Figure 3.1) have proof number 0 and disproof
number oco. This follows from the fact that no expansions are needed to prove the

3.1. An informal description 53

olKlw 1[L]1 11 N

true false

Figure 3.1: An AND/OR tree with proof and disproof numbers.

node, since it 1s already proved, and that no number of expansions could ever disprove
the node. Analogously, disproved nodes (e.g., node O in Figure 3.1) have proof
number oo and disproof number 0. Unsolved leaves (e.g., nodes E, F, L, M, N, I,
and P) have a proof and disproof number of unity, as expanding the node itself may
be sufficient to solve the node.

Internal AND nodes have as proof numbers the sum of the proof numbers of their
children, since to prove an AND node, all children must be proved. The disproof
number of an AND node equals the minimum of its childrens’ disproof numbers,
since only one child needs to be disproved to disprove the AND node. For instance,
the proof number of node H is equal to the sum of the proof numbers of its children
M and N (2 = 1+41). The disproof number of node H is equal to the minimum
of the disproof numbers of its children (1). Analogously, the proof number of an
internal OR node equals the minimum of the proof numbers of its children, whereas
its disproof number equals the sum of the disproof numbers of its children. For
instance, the proof number of node A is equal to the minimum of the proof numbers
of its children B, C and D (1). The disproof number of node A is equal to the sum
of the disproof numbers of its children (3 = 1424-0).

The root (A) has proof number 1. This means that at least one leaf (in this case
node L) should be proved to prove the root. The disproof number of the root is equal
to 3. This means that at least three nodes (node F or node F, node L, and node M
or node N) have to be disproved to disprove the root.

The main assumption underlying pn search is that it is generally better to expand

54 Chapter 3. The proof-number search algorithm

those nodes which are in the smallest proof and/or disproof sets. In other words,
pn search concentrates at each step on the potentially least amount of work necessary
to solve the tree.

The only remaining question is: when to select a node from the smallest proof set
of the root and when to select a node from its smallest disproof set? Surprisingly, we
can always do both at the same time. Allis et al. (1994) prove that the intersection
of any smallest proof set and any smallest disproof set of the same node 1s always
non-empty. The nodes which are elements of both a smallest proof set and a smallest
disproof set of the root are called most-proving nodes. Thus, if after expansion of
a most-proving node P, it obtains the value true, the proof number of the root is
decremented by unity, while if P obtains the value false, the disproof number of
the root is decremented by unity. If the value of P remains unknown, the newly
generated children may have their impact on the proof and/or disproof numbers of
P and its ancestors. A most-proving node is determined in the tree by selecting, at
AND nodes, a child with disproof number equal to its parent’s, and at OR nodes a
child with proof number equal to its parent’s. By thus traversing the tree from its
root to a leaf (e.g., the bold path from A to L in Figure 3.1), it is shown that a
most-proving node is found (Allis et al., 1994).

3.2 The pseudo-code of the algorithm

All algorithms given in this section are based on the algorithms given by Allis (1994).
The main proof-number search algorithm is given in Figure 3.2. The only parameter
of the procedure is root, being the root of the search tree. After execution of the
procedure, the root’s value can have one of three values: true, false or unknown.
First, the root is evaluated and its proof and disproof numbers are initialized. Then,
in the main loop, repeatedly a most-proving node is selected, expanded, and all its
children are evaluated. Thereafter, traversing the tree backwards to the root, the
proof and disproof numbers are adjusted.

The function Evaluate evaluates a position, and returns one of the following three
values: true, false, or unknown. The function SetProofAndDisproofNumbers initializes
the proof and disproof numbers of a node. The algorithm is given in Figure 3.3. The
only parameter of the function is node, being the node to be initialized. Two cases are
distinguished. In the first case the node is an internal node (since it is expanded), and
the proof and disproof numbers are initialized according to the proof and disproof
numbers of its children. In the second case the node is not expanded, but it is
evaluated, since immediate evaluation 1s used. The proof and disproof numbers are
initialized according to the evaluation.

The function ResourcesAvailable returns a Boolean value indicating whether suffi-
cient resources are available to continue searching. This is usually dependent on the
available memory, but can also depend on a limited amount of time available. The
function SelectMostProvingNode finds a most-proving node. The algorithm is given
in Figure 3.4. The only parameter of the function is node, being the root of the

3.3. Experimental set-up 55

procedure ProofNumberSearch(root)
Evaluate(root)
SetProofAndDisproofNumbers(root)

root.expanded := false

while root.proof#£0 and root.disproof£0 and
ResourcesAvailable() do begin
mostProvingNode := SelectMostProvingNode(root)
ExpandNode(mostProvingNode)
UpdateAncestors(mostProvingNode, root)
end

if root.proof=0 then root.value := true
elseif root.disproof=0 then root.value := false
else root.value := unknown /* resources exhausted */

end /* ProofNumberSearch */

Figure 3.2: The pn-search algorithm for trees.

(sub)tree where the most-proving node is located. As long as the node is expanded,
a child is chosen with proof or disproof number (dependent on the type of node)
equal to that of the parent. If a leaf is reached, the algorithm stops, and that node
is returned.

The most-proving node found is expanded. This is done by the procedure Ex-
pandNode. The only parameter of this procedure is node, being the node to be
expanded. In Figure 3.5 its algorithm is depicted. First, all children are generated.
Next, every child is evaluated and its proof and disproof numbers are set according
to this evaluation.

After the expansion of the most-proving node, the new information has to be
backed up throughout the whole tree. This is done by the procedure UpdateAnces-
tors. The procedure has two parameters. The first parameter (node) is the node to
be updated, while the second parameter (root) is the root of the search tree. Its
algorithm is shown in Figure 3.6.

3.3 Experimental set-up

Pn search first examines the most forcing variations where the mobility of the op-
ponent is as small as possible. This is explained as follows. The OR player chooses
a child with the lowest proof number. By definition, the proof number of this child
(an AND node) is equal to the sum of the proof numbers of its children. Tt follows
that the AND child with the lowest proof number has the lowest mobility. Because
pn search first examines forcing variations, it is expected that it will work extremely

56 Chapter 3. The proof-number search algorithm

procedure SetProofAndDisproofNumbers(node)
if node.expanded then /* internal node */
if node.type=AND then begin /* AND node */
node.proof := 0
node.disproof := oo
for i:=1 to node.numberOfChildren do begin
/* Add up proof numbers and minimize disproof numbers */
node.proof := node.proof + node.children[i].proof
if node.children[i].disproof<node.disproof then
node.disproof := node.children[i].disproof
end
end else begin /* OR node */
node.proof := oo
node.disproof := 0
for i:=1 to node.numberOfChildren do begin
/* Minimize proof numbers and add up disproof numbers */
if node.children[i].proof<node.proof then
node.proof := node.children[i].proof
node.disproof := node.disproof + node.children[i].disproof
end
end
else /* leaf */
case node.value of begin
false:
node.proof := oo
node.disproof := 0
true:
node.proof := 0
node.disproof := oo
unknown:
node.proof := 1
node.disproof := 1
end

end /* SetProofAndDisproofNumbers */

Figure 3.3: The proof-and-disproof-numbers-calculation algorithm.

3.3. Experimental set-up 57

function SelectMostProvingNode(node)
while node.expanded do begin
=1
if node.type=OR then /* OR node */
while node.children[i].proof#node.proof do i := i+1
else /* AND node */
while node.children[i].disproof#node.disproof do i := i+1
node := node.children[i]
end

return node
end /* SelectMostProvingNode */

Figure 3.4: The most-proving-node-selection algorithm.

procedure ExpandNode(node)

GenerateAllChildren(node)

for i:=1 to node.numberOfChildren do begin
Evaluate(node.children[i])
SetProofAndDisproofNumbers(node.children[i])
node.children[i |.expanded := false

end

node.expanded := true

end /* ExpandNode */

Figure 3.5: The node-expansion algorithm.

well in cases where the goal can be reached by forcing variations. Therefore, we have
chosen to investigate this in the domain of finding checkmates.

3.3.1 The search engine

The proof-number search engine is implemented according to the description in Sec-
tion 3.1. The most important enhancement of the pn-search implementation, relative
to a naive implementation is in the initialization of proof and disproof numbers at
the leaves. In the standard algorithm, proof and disproof numbers are each initial-
ized to unity. Assume that after expansion all the n children evaluate to the value
unknown. Then the proof and disproof numbers of the most-proving node are set to
1 and n for an OR node, and to n and 1 for an AND node. In our implementation, to
distinguish between leaves, before expansion, we set the proof and disproof number
of node P to 1 and n (or n and 1, depending on the node type), where n is the

58 Chapter 3. The proof-number search algorithm

procedure UpdateAncestors(node, root)
SetProofAndDisproofNumbers(node)
while node#£root do begin
node := node.parent
SetProofAndDisproofNumbers(node)
end
end /* UpdateAncestors */

Figure 3.6: The ancestor-updating algorithm.

number of legal moves in the position represented by P. Experiments show that the
extra overhead introduced by counting the number of legal moves at each node is
more than compensated for by the value of the extra information thus revealed to
the node-selection process (Allis, 1994).

3.3.2 The move ordering

For pn search the move ordering is of less importance than for af search. For the
reproducibility of the experiments we have chosen to order the moves in descending
square order (h8, g8, ..., a8, h7,...;a7, ..., hl ... al). The moves are sorted according
to their from squares. If two moves have identical from squares they are sorted
according to their to squares. If these are also identical, then the moves must be
promotion moves, and the moves are sorted according to their promotion pieces (in
the order Queen, Rook, Bishop, Knight).

As an example we provide the starting position at the game of chess. The White
moves are sorted thus: h2-h4, h2-h3, g2-g4, g2-g3, f2f4, 213 e2-e4,
e2—e3, d2-d4, d2-d3, c2-c4, c2-c3, b2-b4, b2-b3, a2-a4, a2-a3,
Ngl-h3, Hgl+H3, HNbl—<3, {HNbl-a3l.

3.4 The test set

For our experiments we used a diverse set of mating problems. They are taken
from Krabbé’s (1985) Chess Curiosities and Reinfeld’s (1958) Win at Chess. The
35 positions taken from Krabbé (1985) are mating problems in six moves or more.
They are indicated by the name Kz, in which z refers to the diagram number in the
source and takes the values 8, 35, 37, 38, 40, 44, 60, 61, 78, 192, 194, 195, 196, 197,
198, 199, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 261,
284, 317, 333 and 334. The 82 positions taken from Reinfeld (1958) are problems
where we know that a forced mate is possible. They are indicated by the name Rz,
z again referring to the problem number in the source, this time running over 1,
4,5, 6,9, 12, 14, 27, 35, 49, 50, 51, 54, 55, 57, 60, 61, 64, 79, 84, 88, 96, 97, 99,
102, 103, 104, 105, 132, 134, 136, 138, 139, 143, 154, 156, 158, 159, 160, 161, 167,

3.5. Experiments 59

168, 172, 173, 177, 179, 182, 184, 186, 188, 191, 197, 201, 203, 211, 212, 215, 217,
218, 219, 222, 225, 241, 244, 246, 250, 251, 252, 253, 260, 263, 266, 267, 278, 281,
282, 283, 285, 290, 293, 295 and 298. This results in a test set of 117 positions (see
Appendix D).

3.5 Experiments

Pn search always aims at proving or disproving a certain goal. In our experiments
the only goal is searching for mate. In our description, we distinguish between the
attacker and the defender. The attacker is the player to move in the root position,
while the defender is the opponent. A position is proved if the attacker can mate,
while draws (by stalemate, by repetition of positions and by the 50-move rule) and
mates by the defender are defined to be disproved positions for the attacker. If a
position is neither proved nor disproved, it is said not to be solved.

We have compared the the pn-search algorithm to the a(-search algorithm, im-
plemented in Duck? on the test set described in Section 3.4. We note that it is
possible to create a special mate searcher using a3 search, which will perform better
than Duck. However, pn search does not use any chess-specific knowledge other
than recognizing mates, stalemates, and drawn positions. Therefore, we decided to
choose DUCK as the af searcher. The search was terminated as soon as any mate
was found. The experiments are conducted to investigate how a best-first search
algorithm (using much memory, since it stores the whole search tree) compares to
the widely used depth-first a/F-search algorithm (using little memory). Furthermore,
in the next chapters we concentrate on best-first search, using proof-number search
as example and using the same test set.

We have performed experiments in which both programs had to solve each posi-
tion within 1,000,000 nodes. This limit was selected for two reasons:

1. The calculation time (up to 5 minutes on the hardware used) corresponds
roughly to tournament conditions.

2. The search tree for pn search must be kept in memory during the calculations:
a tree of 1,000,000 nodes is close to the maximum achievable on the hardware
used.

3.6 Results

This section contains the results of the experiments described in Section 3.5. The
complete results for every test position individually are presented in Appendix E. As

?In contrast to ALIBABA, of which the of search engine was designed specifically for the
transposition-table experiments, DUCK is a full-blown tournament program, incorporating a de-
tailed evaluation function and several o3 enhancements such as extension heuristics. For more
details, see Breuker et al. (1994b).

60 Chapter 3. The proof-number search algorithm

the measures of performance we use the number of positions solved and the number
of nodes investigated.

From the 117 test positions, 106 positions were solved by at least one algorithm:
73 were solved by both algorithms, 30 by pn search only and 3 by af search only. We
have stated for each test position the algorithm by which it could be solved within
1,000,000 nodes.

Both algorithms: K35, K38, K197, K211, k212, k261, k317, r1, R4, R5, RY, R12,
R14, R27, R35, R49, RH0, RH4, R55, RH7, R60, R61, R64, R7T9, R84, R88, R97
R99, R102, R103, R104, R132, R134, R136, R139, R143, R154, R156, R158
R160, R161, R167, R172, R173, R177, R179, R184, R186, R188, R191, R197,
R203, R211, R212, R215, R217, R219, R225H, R244 R246, R251, R253, R260,
R263, R266, R267, R278, R282, R283, R285, R290, R295, R298.

Pn search only: kK37, k61, k192, k194, k196, k198, K199, K206, K207, K208
K214, K215, K216, k218, K219, K333, K334, r6, RH1, R138, R159, R168,
R182, R218, R222, R241, R250, R2H2, R281, R293.

af search only: K60, K284, R105.
Neither algorithm: K8, K40, K44, K78, K195, K209, k210, k217, K220, rR96, R201.

In Table 3.1 the results are summarized. In the first row of the table the total
number of nodes searched on the 73 positions solved by both algorithms is listed.
The second row contains the average number of nodes searched per position. The
third row lists the number of times the stated algorithm outperformed the other
(by the criterion of the number of nodes searched). In the fourth and fifth row a
position is selected where the ratio of nodes visited was lowest for pn search and
a3 search, respectively. The sixth row shows the average number of nodes searched
by pn search on the 30 positions not solved within a million nodes by a3 search. The
last row shows the average number of nodes searched by af search on K60, K284
and R105, the only three positions solved by af search but not by pn search.

Comparing the performance of pn search with af search creates a consistent
impression of a general superiority of pn search as a mate searcher.

e The total number of nodes investigated by pn search is about 20% of the
number of nodes investigated by af search.

e Pn search outperformed af search in some 84% of the cases.

e The ratio of nodes visited from the point of view of pn search was lowest in
the case of position R217. The number of investigated nodes by pn search is
only a fraction (0.08%) of the number investigated by a8 search. From the
point of view of af search the best position was R253. Here, the number of
nodes investigated by a3 search is about 13% of the number investigated by
pn search.

3.6. Results

61

Pn search af search
Total number of nodes searched 953,762 5,198,074
Average number of nodes per position 13,065 71,206
Best performer 61 12
Best instance (nodes) of pn search (R217) 271 331,404
Best instance (nodes) of af search (R253) 2,355 311
Pn search (nodes) where af search failed 230,166 | >1,000,000
af? search (nodes) where pn search failed >1,000,000 644,058

Table 3.1: Comparing pn search and a3 search.

e The average number of nodes investigated by pn search on the 30 positions
that af search did not solve within 1,000,000 nodes is 230,166. In contrast,
the number of nodes investigated by «af search on the three positions that
pn search did not solve within 1,000,000 nodes is much higher (644,058).

In the next subsection the particular strengths and weaknesses of pn search are
discussed.

3.6.1 Strengths of pn search

This subsection discusses two strengths of pn search: (1) the algorithm does not need
specific chess knowledge, and (2) the algorithm finds deep, forced mates.

No specific chess knowledge

The pn-search algorithm does not use any specific chess knowledge. All that is needed
is a move generator, and an evaluation function able to recognize mate, stalemate
and draws by repetition or by the 50-move rule. We would like to stress that, quite
unlike af search, move ordering has not much influence on the performance of
pn search. This phenomenon is explained by the way pn search builds its tree. At
each step, the child with the smallest proof or disproof number (depending on the
node type) is selected. Only if two children tie is the selection of a node based on
the move ordering. Experiments with changing the move ordering showed that this
ordering has little influence on the number of nodes grown®. Not using any chess
knowledge has the advantage that pn search can be incorporated into any chess
program, regardless of the evaluation function and of the heuristics applied.

3This is contrary to the results found for conspiracy-number search, as given by Klingbeil and
Schaeffer (1990). They show that move ordering does have influence when searching in tactical
chess positions.

62 Chapter 3. The proof-number search algorithm

Finding deep, forced mates

The strategy of pn search may be described as investigating first those variations in
which the opponent has the least mobility. Instead of examining the mobility for a
single position, pn search examines the mobility of the search tree as a whole. The
proof number of the root indicates, at any point in time during the computation, the
mobility left to the defender for escaping mate. The achievements seem to indicate
that, during a mate search, mobility is the most important factor. Clearly, chess
characteristics, such as material balance and positional advantage, lose most of their
meaning when trying to force a mate is the unique goal aimed at. Moreover, the
distance-to-mate is no longer a dominant factor in the size of the search tree grown.
As long as the mobility of the defender is restricted, pn search will continue to
explore a variation, regardless of the depth of the subtree explored. We present two
sample positions where this characteristic leads to the discovery of a deep mate,
which would not be found if the depth of the subtree explored was an important
factor (as it is in af search).

7,

*%

Figure 3.7: Mate in 38 (wTM™); (L. Ugren).

The position in Figure 3.7 is taken from Diagram 194 in Krabbé (1985). We
note that the square al is the left-bottom square, so Black has 4 Pawns ready to
promote. For the chess-playing reader we cite the solution as stated by Krabbé: “ 1.
Sa34+ dal 2. b2+ Hbl 3. £xd4+ el If White could now play 4. £b2+
bbl 5. &xeb+ etc., that would shorten the procedure enormously, but of course
Black would escape: 4. ..., ¢9d2. This necessitates the repetition of a seven-move
operation to bring the zwickmiihle around: 4. &e3+ dpdl 5. Ed8+ el 6.
&d2+ &dl 7. £ba+ el 8. a3+ &bl 9. Eb8+ Hal 10. 2b2+ &bl
11. &xeb+ el 12. &fa+ &dl 13. Hd8+ Fel 14. &d2+ &dl 15. £ba+

3.6. Results 63

el 16. £a3+ &bl 17. £b8+ Hal 18. £b2+ &bl 19. &xf6+ el 20.
Seb5+ &dl 21. Hd8+ el 22. &d2+ Hdl 23. 2b4a+ Pl 24. a3+ &bl
25. £b8+ Fal 26. £b2+ &bl 27. HxgT+ Pel 28. Hh6+ odl 29. Ed8+
hel 30. &d24 bdl 31. &b4a+ el 32. 2a3+ Kbl 33. Eb8+ Hal 34.
£eT! and finally the idea is clear: f6 is the only safe square to threaten mate; on
other squares the £\h4 or one of the Pawns could have thwarted that mate. 2 d4
and Aeb had to go to open the diagonal, &6 to gain access to g7, and & g7 to gain
access to 6. After 34. &e7, mate cannot be staved off for more than a few moves.”
The remaining moves are: 34. ..., c1=% 35. 4f64+ Wb2 36. Zxb2 el=% 37.
Eb8+ We5 38. & xeb mate.

Proof-number search solves this mate in 229,423 nodes, whereas our implemen-
tation of a3 search fails to solve it within 50,000,000 nodes®.

Figure 3.8: Mate in 25 (WTM); (J.-L. Seret).

The position in Figure 3.8 is taken from Diagram 199 in Krabbé (1985). Again,
for the chess-playing reader we give the solution as stated by Krabbé: “Here, there
are also two troublemakers and White disposes of an extended zwickmiihle like the
one in diagram 194 [our Figure 3.7] to silence them. 1. &b2 would mean mate in
2 if Black didn’t have 1. ... a3+. That Pawn can be immediately removed with
1. &xad+, but after el 2. Bcd+ bl 3. &c2+ dal! (gcl 4. &15+ allows
White to enter the solution at move 14) 4. b3 Black has the nasty 4. ..., b5 5.
cxb6 Ebb+ etc. Therefore, in order to remove the a4, White must first remove
the &b7. Hence 1. $e2+ el (‘%CQ 2. HEcd+ bl 3. £d3+ Hal 4. Ec2 and
5. Ha2 mate) 2. &g4+ Hfl 3. &h3+ dgl 4. HEga+ Fhl 5. &g2+ bgl

4This result is heavily dependent on the search extensions used. The af program THETURK
solves this mate in 3,325,715 nodes when choosing the right extensions (Schaeffer, 1998)

64 Chapter 3. The proof-number search algorithm

6. &xb74+! Hfl 7. &a6+ el 8. Eed+ Bdl 9. &e2+ el 10. 2b54!
&d1 and we are back in the diagram, but without the 2b7 which means the £ a4
meets its end too. 11. &xad4+ bel 12. Ec4+ ddl 13. 2c24+ Hel! Because
if now 13...., &ral 14. Hb3! 14. 215+ Hdl 15. &ga+ el 16. Zed+ Hfl
17. £h3+ gl 18. Hga+ Hhl 19. Sg2+ gl 20. &c6+! Hfl 21. &b5+
Fel 22. Eed4+ Fd1 and there we are: back in the diagram, but without those
inconvenient Pawns. 23. &b2! HExch 24. 2a4+4+ Ec24 25. &2xc2 mate.”

Proof-number search solves this mate in 370,016 nodes, whereas our implemen-
tation of af search fails to solve it within 50,000,000 nodes.

In Figures 3.7 and 3.8, the mate found by pn search is also the intended solution
to the problem. Since the solutions contained many forcing moves (leaving the de-
fender few moves), pn search performed very well. a8 search performed very poorly
because the solutions were very deep (75 and 49 ply, respectively). As we will see in
subsection 3.6.2, in some cases, the duty of playing the most-forcing moves imposed
by pn search may lead to excessive departures from the optimal solution.

3.6.2 Weaknesses of pn search

This subsection discusses three weaknesses of pn search: (1) the inability to find
good, non-forcing moves, (2) the inability to find the shortest mate, and (3) the
inability to deal with transpositions.

Non-forcing moves

In many mating problems, the attacker delivers check on most moves, thus restricting
the options of the defender. In some cases, however, the attacker plays a non-forcing
move, after which almost any move by the defender leads to the same decisive attack.
Since the mobility of the opponent is increased by such a non-forcing move, pn search
prefers first to investigate those variations in which the defender is most confined.

Hence, if the only solution requires one or more non-forcing moves, pn search will
not perform as well as it will when a mate exists with forcing moves only. We note
here that its preference is not merely for checking moves (which are forcing moves
in human parlance), but it must, by its algorithm, prefer the most-forcing checks.
A similar problem is recognized by Schaeffer (1989a, 1990) when using conspiracy-
number search as a tactical analyzer.

As a measure of the difficulty of a position for pn search caused by non-forcing
moves, we propose considering the number of different variations within the solu-
tion. We present a sample position where pn search performed worse than a3 search.
The existence of non-forcing moves proved a significant factor in degrading its perfor-
mance. Problem 14 of Reinfeld (1958) (Figure 3.9) is a mate in four moves consisting
of 49 variations. After 1. Wxh74 Hf8, the best move is the non-forcing move 2.
& 16, threatening the unavoidable 2. ..., Wg7 mate. Proof-number search solves
this mate in 324,542 nodes, whereas a3 search only needs 127,519 nodes.

We conclude that in positions where the solution requires non-forcing moves,
pn search is at a disadvantage. The three positions not solved by pn search (K60,

3.6. Results 65

Figure 3.9: Problem 14 of Win at Chess (WTM).

K284 and R105) have solutions with non-forcing moves. It is even worse, since the
first moves of both solutions are non-forcing, making it impossible for pn search to
find the solutions within 1,000,000 nodes.

Mate length

As stated before, pn search is indifferent to the depth of the search, being governed
only by the defender’s number of options. As a consequence, pn search finds mates
in over 100 moves, while optimal ones exist in fewer than ten moves. The position
shown in Figure 3.10 is problem 150 of Howard (1961). It shows an example of
pn search finding a mate in 114 moves while an optimal mate of four moves exists.
The intended solution reads 1. ¢ve4 and now either 1. ..., fxe6 2. f7 e5 3. f8=&
Heg8 4. /Nf6 mate, or 1. ..., Heg8 2. exf7+ Hh7 3. f8=/N+ g8 4. 7 mate.

As a solution we suggest initializations of the proof and disproof numbers different
from the ones proposed above, specifically with the initial values depending on the
depths in the search tree. This may solve the problems of the apparently aimless
and certainly long paths to mate.

Transpositions

A third weakness encountered when using pn search is the inability of dealing with
transpositions. Assume that an identical subvariation occurs as six separate subtrees
within one variation tree. Then, the number of variations to be solved increases by a
factor of six. The amount of search to be performed, however, increases by a factor
of far more than six. Since, by the rules of combining proof and disproof numbers in

66 Chapter 3. The proof-number search algorithm

7.
%
———

s 0
2 2 2

Figure 3.10: Problem 150 of The Enjoyment of Chess Problems (WTM).

AND/OR trees, the difficulty of each subtree is propagated upwards sixfold, pn search
may well be led to the investigation of other subtrees. If these subtrees fail to deliver
a mate pn search will, at long last, arrive at the correct branch in another subtree
leading to mate.

As an example we provide problem 213 of Reinfeld (1958) (Figure 3.11). The
intended solution starts with the moves 1. Exh7+ dxh7 2. Wh54+ g8 3.
Exg7+ dxg7 4. £h6+ Fh7 5. &gb+ Hg7 6. Whe+ Lf7 7. Wie+ g8 8.
Wg6+ Ph8, reaching the position of Figure 3.12. In the solution tree this position
occurs six times, depending on Black’s defence at moves 4, 5 and 6. The proof
number of this position will be high because the distance-to-mate from that position
is still considerable. Upward propagation will expand the proof number six-fold.
The resultant high proof number provides an obstacle which pn-search was unable
to overcome.

3.7 Chapter conclusions

In this chapter we have described experiments comparing pn search with «f search.
Pn search has been presented as a best-first search technique easy to implement and
uniquely attuned to finding mates in chess. Beyond recognizing mates, stalemates,
and drawn positions, no chess-specific knowledge is required. When a mate exists
within its horizon, this technique consistently outperforms conventional techniques
in terms of nodes visited, except when the solution relies on the presence of non-
forcing moves, transpositions, or on providing the shortest mate.

67

3.7. Chapter conclusions

Figure 3.11: Problem 213 of Win at Chess (WTM).

Figure 3.12: Six-fold transposition in problem 213 of Win at Chess (WTM).

Chapter 3. The proof-number search algorithm

