Chapter 5

The
graph-history-interaction
problem

This chapter is an updated and abridged version of

1. Breuker D.M., Herik H.J. van den, Allis L.V., and Uiterwijk J.W.H.M. (1997a).
A Solution to the GHI Problem for Best-First Search. Proceedings of the Ninth
Dutch Conference on Artificial Intelligence (eds. K. van Marcke and W. Daele-
mans), pp. 457-468. University of Antwerp, Antwerp, Belgium, and

2. Breuker D.M., Herik H.J. van den, Allis L.V., and Uiterwijk J.W.H.M. (1998a).
A Solution to the GHI Problem for Best-First Search. Submitted as journal
publication. Also published (1997) as Technical Report CS 97-02, Universiteit
Maastricht, Maastricht, The Netherlands.

5.1 The history of a position

In a search tree, it may happen that identical nodes are encountered at different
places. If these so-called transpositions are not recognized, the search algorithm un-
necessarily expands identical subtrees. Therefore, it is profitable to recognize trans-
positions and to ensure that for each set of identical nodes, only one subtree is
expanded.

In computer-chess programs using a depth-first search algorithm, this idea is re-
alized by storing the result of a node’s investigation in a transposition table. For
details, see Section 2.3. If an identical node is encountered in the search process, the
result is retrieved from the transposition table and used without further investiga-
tion.

If a (selective) best-first search algorithm (which usually stores the whole search
tree in memory) is used, the search tree is converted into a search graph, by joining
identical nodes into one node, thereby merging the subtrees.

81

82 Chapter 5. The graph-history-interaction problem

These common ways of dealing with transpositions contain an important flaw:
determining whether nodes are identical is not the same as determining whether
the search states represented by the nodes are identical (cf. Section 2.1). For two
reasons, the path leading to a node cannot be ignored. First, the history of a node
may partly determine the legitimacy of a move. For instance, in chess, castling rights
are not only determined by the position of the pieces on the board, but also by the
knowledge that in the position under investigation the King and Rook have not
moved previously. Second, the history of a node may play a role in determining the
value of a node. For instance, a position may be declared a draw by its three-fold
repetition or by the so-called k-move rule (Kazié et al., 1985).

We refer to the first problem as the move-generation problem, and to the second
problem as the evaluation problem. The combination of these two problems is referred
to as the graph-history-interaction (GHI) problem (cf. Palay, 1985; Campbell, 1985).

The GHI problem is a noteworthy problem not only in chess but in the field of
game playing in general. Its applicability extends though to all domains where the
history of states is important. To mention just one example: in job-shop scheduling
problems the costs of a task may be dependent on the tasks done so far, e.g., the
cost of preparing a machine for performing some process depends on the state left
after the previous process.

A possible solution to the GHI problem is to include in all nodes the status of the
relevant properties of the history of the node, i.e., the properties which may influence
either the move generation or the evaluation of the node. A disadvantage of such a
solution is that too many properties may be relevant, resulting in the need for storing
large amounts of extra information in each node. For chess, we can distinguish four
relevant properties of the history of a position (the first two being relevant for the
move-generation problem, and the last two for the evaluation problem):

1. the castling rights (Kingside and Queenside for both players),

2. the en-passant capturing rights,

3. the number of moves played without a capture or a pawn move, and
4. the set of all positions played on the path leading to this node.

The first two properties can be included in each node, without much overhead. The
third property can be included in each node, but will reduce the frequency of trans-
positions drastically. The inclusion of the fourth property is necessary to determine
whether a draw by three-fold repetition has been encountered. Unfortunately, it
would require too much overhead. As a result, in most chess programs, the first two
properties are included in a node, while the last two are not.

Depending on which properties are included in a node, the probability of two
nodes being identical will be reduced. If not all relevant properties are included and
transpositions are used, it is possible that incorrect conclusions are drawn from the
transpositions (cf. Section 2.2). Campbell (1985) mentioned that, contrary to best-
first search (which he calls selective search), in depth-first search the GHI problem
occurs less frequently.

5.2. An example of the GHI problem 83

In this chapter we deal with the third problem statement: is it possible to give a
solution for the GHI problem for best-first search? A solution to the GHI problem for
best-first search is presented with only a few relevant properties included in a node.
In Section 5.2 an example of the GHI problem is given. Previous work on the GHI
problem is discussed in Section 5.3. In Section 5.4 the general solution to the GHI
problem for best-first search is described. A formalized description and the pseudo-
code for the implementation in pn search is given in Section 5.5. Section 5.6 lists
experiments with the new algorithm. It is compared to three other pn-search variants.
The results are presented in Section 5.7. Finally, Section 5.8 provides conclusions.

5.2 An example of the GHI problem

Figure 5.1 shows a pawn endgame position, taken from Campbell (1985), where the
GHI problem can occur. White (to move) has achieved a potentially won position.
However, we show that it is possible to evaluate this position incorrectly as a draw.
In this chapter we assume that a single repetition of positions evaluates to a draw,
in contrast with the FIDE ruling which stipulates that the same position must occur
three times.

/
"
" >

;,/
e
/7//7//%7/%

Figure 5.1: A pawn endgame (WTM).

In Figure 5.2 a relevant part of the search tree is depicted. After the move se-
quence 1. &b5? Le6? 2. La6? d5 3. bbb heb the position after move 1 is
repeated (node F), and evaluated as a draw. Since White does not have any better
alternative on the third move, the position after 2. a6 (node H) is evaluated as a
draw. Backing up this draw leads to the incorrect conclusion that node A evaluates
to a draw. However, after the winning move sequence 1. a5! e6 2. Ha6! the

84 Chapter 5. The graph-history-interaction problem

same position (node H) is reached, which is now evaluated as a win after 2. ...,
&d5 3. Lb5 Le6 4. Fc6! (node G). Backing up this win leads to the correct
conclusion that node A evaluates to a win.

Kb5? Kab!

Kds! \ Ke6? Ke6

b E
draw "+ kae?
Kes! | Ka6!

o .

win

Figure 5.2: The GHI problem in the pawn endgame.

An example of the general case is given in Figure 5.3. It shows an AND /OR search
tree with identical positions!. The values of the leaves (given in italics) are seen from
the OR player’s point of view. The values given next to the nodes are back-up values.
We note that the GHI problem can occur in any type of AND/OR tree. However, to
keep the example as clear as possible we have chosen to show the example for a
minimax game tree.

The terminal nodes F and G are a win for the OR player, and the terminal nodes
C and F are evaluated as a draw because of the repetition of positions. Propagating
the evaluation values of the terminal nodes through the search tree results in a win
at the root. When making use of transpositions, every node should occur only once
in the tree. Assume that a parent generates its children and that one of its children
already exists in the tree. Then a connecting edge from the parent to the existing
node is made. This transforms the search tree into a Directed Cyclic Graph (DCGQG)
(Figure 5.4).

In this DCG it is difficult to determine unambiguously the value of node F due
to the GHI problem. The value of this node is dependent on the path leading to
it. Following the path A-B-C-F, child C' of node F' is a repetition and hence F is

!In games such as chess, a repetition of positions is impossible after only two ply (node C in
the left subtree of node B and node F' in the subtree of node D). Our example disregards this
characteristic for simplicity’s sake.

5.3. A review of previous work 85

win draw

Figure 5.3: A search tree with repetitions.

evaluated as a draw, but following the path A-B-D-F', child C' is not a repetition
and 1s not evaluated as a draw. Thus, in the DCG, node F' has two different values.
Hence, in this example it is not possible to determine the value of root A, since in
the first mentioned case it 1s a draw, and in the second case it is a win, due to the
values of E and G.

5.3 A review of previous work

Although several authors have mentioned the GHI problem, so far no solution to
this problem has been described. Only provisional ideas have been given. Below, we
review the five most important ideas?.

Palay (1985) first identified the GHI problem. He suggested two “solutions”: (1)
refrain from using graphs, and (2) recognize when the GHI problem occurs and
handle accordingly. The first “solution” (apart from not being a real solution, it
merely ignores the problem) had as a drawback that large portions of the graph now

2Berliner and McConnell (1996) suggested the use of conditional values as an idea to solve the
GHI problem. They promised details in a forthcoming paper.

86 Chapter 5. The graph-history-interaction problem

win

win

Figure 5.4: The DCG corresponding with the tree of Figure 5.3.

would be duplicated every time a duplicate node occurred, wasting a large amount
of time and memory. The second solution worked as follows. When the positions
suffering from the GHI problem were recognized, the path from the repetition node
upwards to the ancestor with multiple parents was split into separate paths. He did
not implement this strategy, since he conjectured that such positions only occurred
occasionally (the GHI problem occurred in three out of 300 test positions). A disad-
vantage of this solution is that the recognition of positions suffering from the GHI
problem is not straightforward.

Another idea for a solution originates from Thompson (Campbell, 1985). While
building a tactical analyzer, Thompson (1995) used a DCG representation. He saw
it suffering from the GHI problem. He cured the problem by taking into account
the history of the node to be expanded. The value of this node was then, if neces-
sary, corrected for its history. The newly-generated children were evaluated by doing
a3 searches, yet neglecting their history. As a consequence, the only history errors
could occur at the leaves. These errors were corrected as soon as such a leaf was
expanded, but it could happen that the expansion of a node was suppressed due to
the error.

Campbell (1985) discussed the GHI problem thoroughly, applying it to depth-first
search only. The key in avoiding most occurrences of the GHI problem appears to be
iterative deepening. Some problems (called “draw-first”) can be overcome®. However,

3In the draw-first case node F' in Figure 5.4 is first reached through path A—-B-C—F (and the

5.3. A review of previous work 87

other problems, which he called “draw-last” could not be solved by his approach?.
Finally, he remarked that “the GHI problems occur much more frequently in selective
search programs, and require some solution in order to achieve reasonably general
performance. Both Palay’s and Thompson’s approaches seem to be acceptable.” We
conclude that Campbell gave a partial solution for depth-first search, and no solution
for best-first search.

Baum and Smith (1995) stumbled on the GHI problem when implementing their
best-first search algorithm BPIP (Best Play for Imperfect Players). Baum and Smith
completely store the DCG in memory and grow it by using “gulps”. In each gulp a
fraction of the most interesting leaves is expanded. For each parent-child edge e a
subset S(e) was defined as the intersection of all ancestor nodes and all descendant
nodes of edge e. A DCG was claimed to be legitimate (i.e., no nodes have to be
split) if and only if, for all children C' with more than one parent P, S(epc) is
independent of P. Their solution was as follows. Each time a new leaf was created
three possibilities were distinguished: (1) if the leaf was a repetition it was evaluated
as a draw, else (2) if a duplicate node existed in the graph, these two nodes were
merged on the condition that the resultant DCG was legitimate, else (3) the node was
evaluated normally. After leaf expansion it was exhaustively investigated whether
every node C' with multiple parents passed the S(e) test. If not, such a node C
was split into several nodes C’, C”, ..., with distinct subsets S(epc). Then, the
subtrees of the newly-created nodes had to be rebuilt and re-evaluated. Baum and
Smith gave this idea as a solution to the GHI problem without the support of an
implementation. Moreover they remarked that “Implementation in a low storage
algorithm would probably be too costly”. We believe that the overhead introduced
by our idea, described in the next section, is much less than the overhead introduced
by the idea of Baum and Smith.

Schijf et al. (1994) investigated the problem in the context of pn search (Al-
lis et al., 1994). They examined the problem in Directed Acyclic Graphs (DAGs)
and DCGs separately. They noted that, when the pn-search algorithm for trees is
used in DAGs, the proof and disproof numbers are not necessarily correctly com-
puted, and the most-proving node is not always found. Schijf (1993) proved that
the most-proving node always exists in a DAG. Furthermore, he formulated an al-
gorithm for DAGs that correctly determines the most-proving node. However, this
algorithm is only of theoretical importance, since it has an unfavourable time-and-
memory complexity. Therefore, a practical algorithm was developed. Surprisingly,
only two minor modifications to the pn-search algorithm for trees are needed for
a practical algorithm for DAGs. The first modification is that instead of updating
only one parent, all parents of a node have to be updated. The second modifica-
tion is that when a child is generated, it has to be checked whether this node is a

value of node F' is based on child C' being a repetition) and later in the search node F is reached
through path A-B—D—F and the previous value of node F' is used.

4In the draw-last case node F in Figure 5.4 is first reached through path A~-B-D-F (and the
value of node F is based on child C' being no repetition) and later in the search node F' is reached
through path A-B—C—F and the previous value of node F' is used.

88 Chapter 5. The graph-history-interaction problem

transposition (i.e., if it was generated earlier). If this is the case, the parent has to
be connected to this node that has already been generated. Schijf et al. (1994) note
that this algorithm contains two flaws. First, the proof and disproof numbers do not
represent the cardinality in the smallest proof and disproof set, but these numbers
are upper bounds to the real proof and disproof numbers. Second, the node selected
by the function SelectMostProvingNode is not always equal to a most-proving node.
However, 1t still holds that if the node chosen is proved, the proof number of the
root decreases, whereas if this node is disproved, the disproof number of the root
decreases. In either case the proof or disproof number may decrease by more than
unity, as a result of the transpositions present. This algorithm has been tested on
tic-tac-toe (Schijf, 1993). The DAG algorithm uses considerably fewer nodes (viz. a
factor of five) to prove the game-theoretic value of tic-tac-toe. For the problem of
applying pn search to a DCG, Schijf et al. (1994) give a time-and-memory-efficient
algorithm, which, however, sometimes inaccurately evaluates nodes as a draw by
repetition. They remark that, as a consequence, their algorithm is sometimes unable
to find the goal, even though it should have found it.

5.4 BTA: an enhanced DCG algorithm

In this section we describe a new algorithm (denoted BTA: Base-Twin Algorithm)
for solving the GHI problem for best-first search. The algorithm had been developed
in a joint effort with Victor Allis. Its correctness has been proven experimentally.
A formal proof is beyond the scope of this research. The description given below
provides a clarity of reasoning, which in our opinion, is sufficiently convincing in its
own.

The BTA algorithm is based on the distinction of two types of nodes, termed base
nodes and twin nodes. The purpose of these types is to distinguish between identi-
cal positions with different history. Although it was known in the DCG algorithm
described by Schijf et al. (1994) that nodes sometimes may be incorrectly evaluated
as a draw, their algorithm was unable to note when this occurs. We have devised
an alternative in which a sufficient set of relevant properties for correct evaluation
is recorded. We have chosen to include in a node only a small number of relevant
properties. The reasons for not including all relevant properties are:

e some properties are only relevant for a small number of nodes,

e the more properties that are included, the lower the frequency of transposi-
tions, and

e some properties require too much overhead and/or take up too much space
when included in a node.

The move-generation problem (cf. Section 5.1) can easily be solved by including
the relevant properties (in chess these are the castling rights and the en-passant
capturing rights) into each node. Hence, only the evaluation problem (cf. Section 5.1)

5.4. BTA: an enhanced DCG algorithm 89

needs to be solved. We have chosen to describe the solution of repetition of positions,
since repetition of positions occurs in many search problems, and the k-move rule is
a special rule which seldomly shows up in practice. As mentioned before, we assume
that a single repetition of positions results in a draw.

Our representation of a DCG

Basically the GHI problem occurs because the search tree is transformed into a DCG
by merging nodes representing the same position, but having a different history. To
avoid such an undesired coalescence, we propose an enhanced representation of a
DCG. In the graph we distinguish two types of nodes: base nodes and twin nodes.
After a node is generated, it is looked up in the graph by using a pointer-based table.
If it does not exist, it is marked as a base node. If it exists, 1t 1s marked as a twin
node, and a pointer to its base node is created. Thus, any twin node points to its
base node, but a base node does not point to any of its twin nodes. Only base nodes
can be expanded. The difference with the “standard implementation” of a DCG is
that if two or more nodes are represented by the same position (ignoring history)
they are not merged into one node. However, their subtree is generated only once.
In general, a twin node may have a value different from its base node, although they
represent the same position.

Figure 5.5 exhibits our implementation of the DCG given in Figure 5.4 (assuming
that the position corresponding with node F is first generated as child of node C' and
only later as child of node D). Nodes in upper-case are base nodes, nodes in lower-
case are twin nodes. The dashed arrows are pointers from twin nodes to base nodes.
The problem mentioned in Figure 5.4 can now be handled by assigning separate
values to nodes F' and f, and to C and ¢, depending on the paths leading to the
corresponding positions.

The BTA algorithm as solution

As stated before, encountering a repetition of positions in node p does not mean
that the repetition signals a real draw (defined as the inevitability of a repetition
of positions under optimal play). To handle the distinction, we introduce the new
concept of possible-draw. Node p is marked as a possible-draw if a node is a repetition
of anode P in the search path. (Whether a possible draw also is a real draw depends
on the history.) Then the depth of node P in the search path (termed the possible-
draw depth) is stored in node p.

The BTA algorithm for best-first search consists of three phases. Phase 1 deals
with the selection of a node. Phase 2 evaluates the selected node. Phase 3 backs
up the new information through the search path. The three phases are repeatedly
executed until the search process is terminated.

90 Chapter 5. The graph-history-interaction problem

Figure 5.5: Our DCG with base nodes and twin nodes corresponding with
the DCG of Figure 5.4.

5.4.1 Phase 1: select the best node

In phase 1 a node is selected for evaluation®. This is accomplished in a way similar
to the best-first tree algorithm (see Section 2.1). For comparison, a short outline of
the tree algorithm is given. First, the root is selected. Next, a best child from the
selected node is selected according to the best-first-search criteria. The last step is
repeated until (1) a repetition has been encountered (evaluating to a draw), or (2)
a leaf has been found.

The selection of a node in the BTA algorithm is as follows. First, the root is
selected (for further selection, see below). Then, for each selected node, two cases

exist:

1. if a child of the selected node is marked as a possible-draw, and the remaining
children are either real draws, or marked as possible-draws, then the selected
node is marked as a possible-draw and the corresponding possible-draw depth is
set to the minimum of the possible-draw depths of the children. Subsequently,
all possible-draw markings from the children are removed and the parent of
the selected node is re-selected for investigation;

2. otherwise, a best child is selected for investigation, ignoring the children which
are either real draws, or marked as a possible-draw.

5We assume that the selection of a node proceeds in a top-down fashion.

5.4. BTA: an enhanced DCG algorithm 91

Assume that a node at depth d in the search path is marked as a possible-draw and
the corresponding possible-draw depth is equal to d. This implies that the possible-
draw marking of this node is based solely on repetitions of positions in the subtree
of the node and on real draws. Therefore, the node is a real draw by repetition,
independent of the history of the node. Hence, the node is evaluated accordingly.

The selection of a node is repeated until (1) a real draw by repetition has been
encountered, or (2) (a twin node of) a base node with known game-theoretic value
has been found®, or (3) a leaf has been found.

The selection of a node in the BTA algorithm is illustrated below. In Figure 5.6
part of a search graph is depicted. The selection starts at the root (node A). Assume
the traversal is in a left-to-right order. Then, at a certain point, node ¢ is selected,
and marked as a possible-draw because it is a repetition of node C' at depth two in
the search path. See Figure 5.6 (the equal sign represents the possible-draw marking
and the subscript two represents the possible-draw depth).

Figure 5.6: Encountering the first repetition c.

After marking node ¢ as a possible-draw, the parent of this node (node D) is re-
selected and marked as a possible-draw, with the same possible-draw depth as node
c. Further, the possible-draw marking of node ¢ is removed. After marking node D
as a possible-draw, its parent C' is re-selected. The next best child (not marked as
a possible-draw) E is selected. Continuing this procedure, at a certain point child d
of node F' is selected. The child ¢ of twin node d is found by directing the search to

8This is possible, because a base node does not point to its twin nodes. If the game-theoretic
value of a twin node becomes known, its corresponding base node is evaluated accordingly, but
other twin nodes remain unchanged.

92 Chapter 5. The graph-history-interaction problem

the base node D of node d. Node ¢ is (again) marked as a possible-draw because it
is a repetition of node C' at depth two in the search path. See Figure 5.7.

Figure 5.7: Encountering the second repetition c.

After the re-marking of node ¢ as a possible-draw, the parent of this node (twin
node d) is re-selected and marked as a possible-draw, with the same possible-draw
depth as node c. Thereafter, the possible-draw marking of node ¢ is removed (for the
second time). After marking node d as a possible-draw, its parent F is re-selected.
The next best child (not marked as a possible-draw) e is selected. This node is a
repetition of node F at depth three in the search path, and is marked as a possible-
draw. See Figure 5.8.

After marking node e as a possible-draw, the parent of this node (node F) is
re-selected. All its children are marked as a possible-draw. Therefore, node F' is also
marked as a possible-draw, with a possible-draw depth of two (the minimum of the
possible-draw depths of the children). Further, the possible-draw markings of all
children are removed. See Figure 5.9.

After marking node F as a possible-draw, the parent of this node (node F) is re-
selected and marked as a possible-draw, with the same possible-draw depth as node
F. Subsequently, the possible-draw marking of node F' is removed. After marking
node F as a possible-draw, its parent (node C') is re-selected. However, all its children
are marked as a possible-draw. Therefore, node C' is also marked as a possible-draw,
with a possible-draw depth of two (the minimum of the possible-draw depths of
the children). Again, the possible-draw markings of all children are removed. See
Figure 5.10.

Now the selection process finishes, since node C' at depth two in the search path

5.4. BTA: an enhanced DCG algorithm 93

\ /

()

Figure 5.8: Encountering the repetition e.

is marked as a possible-draw, and its corresponding possible-draw depth is equal to
the depth of the node in the search path. This means that all continuations from
C lead, in one or another way, to repetitions occurring in the subtree of node C.
Therefore, node C' is evaluated as a real draw by repetition, independent of the
history of the node, but on the basis of its potential continuations.

5.4.2 Phase 2: evaluate the best node

In phase 2 the selected node (say node P) is evaluated. For comparison, again a
short outline of the tree algorithm is given. The evaluation of node P is dependent
on the condition under which phase 1 has terminated.

1. If node P is a repetition, it is evaluated as a draw.

2. If node P is a leaf, it is expanded, the children are evaluated and node P is
evaluated using the evaluation values of the children.

For the evaluation of node P in the BTA algorithm three cases are distinguished.

1. If node P is a real draw by repetition, it is evaluated as a draw. The corre-
sponding base node (if existing) is also evaluated as a draw.

2. If node P is a twin node and its corresponding base node is a terminal node,
node P becomes a terminal node as well and is evaluated as such.

94

Chapter 5. The graph-history-interaction problem

Figure 5.9: Marking node F' as a possible-draw.

Figure 5.10: Marking node C' as a possible-draw.

3. If node P is a leaf, it is expanded, the children are evaluated, and node P is
evaluated using the evaluation values of the children.

5.5. The pseudo-code of the BTA algorithm 95

5.4.3 Phase 3: back up the new information

In phase 3 the value of the selected node is updated to the root” and all possible-
draw markings are removed. In contrast to the tree algorithm, in the BTA updating
process nodes marked as a possible-draw may occur. The back-up value of a node is
determined by using only the evaluation values of children not marked as a possible-
draw. Thus, the children marked as a possible-draw are ignored, because in the next
iteration the search could be mistakenly directed to one of these children, whereas
this child was a repetition in the current path, not giving any new information. After
establishing the back-up value of a node, the possible-draw markings of the children
are removed.

5.5 The pseudo-code of the BTA algorithm

In this section an implementation of the BTA algorithm in pn search (see Chapter 3)
is given. An explanation following the three phases of Section 5.4 provides details on
the seven relevant pn-search procedures and functions. We will make use of several
properties of pn search, in order to simplify and accelerate the general BTA algo-
rithm. For chess, The goal of pn search is finding a mate. A loss and a real draw are
in this respect equivalent (i.e., they are no win). Hence, two types of nodes with a
known game-theoretic value exist: proved nodes (win) and disproved nodes (no win
possible). A proved or disproved node is called a solved node.

5.5.1 Phase 1: select the most-proving node

Phase 1 of the algorithm deals with the selection of a (best) node for evaluation.
This node is termed the most-proving node. In Figure 5.11 the main BTA pn-search
algorithm is shown. The only parameter of the procedure is root, being the root of
the search tree. The BTA algorithm resembles the tree algorithm described in Sec-
tion 3.2, a difference being that procedure UpdateAncestors is called with the parent
of the most-proving node as the parameter instead of the most-proving node itself,
since the most-proving node already has been evaluated in procedure ExpandNode.

The procedures Evaluate and SetProofAndDisproofNumbers and the function Re-
sourcesAvailable are identical to the same procedures and function in the standard
tree algorithm (see Figure 3.2), and not detailed here. The function SelectMostProv-
ingNode finds a most-proving node, according to certain conditions. The function is
given in Figure 5.12. The only parameter of the function is node, being the root of
the (sub)tree where the most-proving node is located.

The function starts to examine whether the node under investigation (say node
P) is a twin node. If so, then the investigation proceeds with the associated base
node.

7In a DCG there can exist more than one path from a node to the root. However, only the path
along which the node was selected is taken into account. Other paths, if any, may be updated after
other selection processes.

96 Chapter 5. The graph-history-interaction problem

procedure BTAProofNumberSearch(root)
Evaluate(root)
SetProofAndDisproofNumbers(root)
root.expanded := false
root.depth := 0

while root.proof#£0 and root.disproof£0 and
ResourcesAvailable() do begin
mostProvingNode := SelectMostProvingNode(root)
ExpandNode(mostProvingNode)
UpdateAncestors(mostProvingNode.parent, root)
end

if root.proof=0 then root.value := true
elseif root.disproof=0 then root.value := false
else root.value := unknown /* resources exhausted */

end /* BTAProofNumberSearch */

Figure 5.11: The BTA pn-search algorithm for DCGs.

If node P has been solved (case 1), node P is returned, because the graph has
to be backed up using this new information.

If node P has not been solved, it is examined whether node P is a repetition in the
current path (case 2). If so, it is marked as a possible-draw. Its ancestor transposition
node in the current path is looked up, and the pdDepth (possible-draw depth) of the
node becomes equal to the depth in the search path of the ancestor node®. Since it
is not useful to examine a repetition node further, the selection of the most-proving
node is directed to the parent of node P.

If node P has not been solved and is not a repetition in the current path, it is
checked whether node P is a leaf (case 3). If so, node P is the most-proving node
which has to be expanded, and node P is returned.

Otherwise (case 4), a best child is selected by the function SelectBestChild, to be
discussed later. If no best child was found, it means that every child is either solved
(proved in case of an AND node, and disproved in case of an OR node) or is marked
as a possible-draw. If any of the children is marked as a possible-draw, the node P 1is
marked as a possible-draw as well. The pdDepth of the node is set to the minimum
of the children’s pdDepths and the markings of all children are removed, etc. See
Section 5.4.

In Figure 5.13 the function SelectBestChild is listed. The function has three pa-
rameters. The first parameter (node) is the parent from which a best child will be

8 The variable pdDepth will act as an indicator of the lowest level in the tree at which there are
nodes having repetition nodes in their subtrees.

5.5. The pseudo-code of the BTA algorithm 97

function SelectMostProvingNode(node)
if NodeHasBaseNode(node) then baseNode := BaseNode(node)
else baseNode := node
/* 1: Base node has been solved */
if baseNode. proof=0 or baseNode.disproof=0 then return node
elseif Repetition(node) then begin /* 2: Repetition of position */
MarkAsPossibleDraw(node)
ancestorNode := FindEqualAncestorNode(node)
node.pdDepth := ancestorNode.depth
return SelectMostProvingNode(node.parent)
end elseif not baseNode.expanded then /* 3: Leaf */
return node
else begin /* 4: Internal node; look for child */
bestChild := SelectBestChild(node, baseNode, pdPresent)
if bestChild=NULL then begin
if pdPresent then begin
MarkAsPossibleDraw(node)
node.pdDepth := c©
for i:=1 to baseNode.numberOfChildren do begin
if PossibleDrawSet(baseNode.child[i]) then
if baseNode.child[i].pdDepth<node.pdDepth then
node.pdDepth := baseNode.child[i].pdDepth
UnMarkAsPossibleDraw(baseNode.child[i])
end
if node.depth=node.pdDepth then return node
else return SelectMostProvingNode(node.parent)
end else begin /* All children are solved, so choose any one */
baseNode.proof := baseNode.child[1].proof
baseNode.disproof := baseNode.child[1].disproof
return node
end
end else begin
bestChild.depth := node.depth+1
return SelectMostProvingNode(bestChild)
end
end
end /* SelectMostProvingNode */

Figure 5.12: The function SelectMostProvingNode.

98 Chapter 5. The graph-history-interaction problem

function SelectBestChild(node, baseNode, pdPresent)
bestChild := NULL
bestValue := oo
pdPresent := false
if node.type=OR then begin /* OR node */
for i:=1 to baseNode.numberOfChildren do begin
if PossibleDrawSet(baseNode.child[i]) then
pdPresent := true
elseif baseNode.child[i].proof<bestValue then begin
bestChild := baseNode.child[i]
bestValue := bestChild.proof
end
end
end else begin /* AND node */
for i:=1 to baseNode.numberOfChildren do begin
if PossibleDrawSet(baseNode.child[i]) then begin
pdPresent := true
break
end
if baseNode.child[i].disproof<bestValue then begin
bestChild := baseNode.child[i]
bestValue := bestChild.disproof
end
end
end

return bestChild
end /* SelectBestChild */

Figure 5.13: The function SelectBestChild.

selected. The second parameter (baseNode) is the base node of that parent®. Finally,
the third parameter (pdPresent, meaning possible draw present) indicates whether
one of the children is marked as a possible-draw. The parameter pdPresent is initial-
ized by the function SelectBestChild. If the node is an OR node, a child marked as a
possible-draw will not be selected as best child, since it gains nothing and the goal
(win) cannot be reached. A best child (of an OR node) is a child with the lowest
proof number. If the node is an AND node, a child marked as a possible-draw is a
best child, since the player to move in the AND node is satisfied with a repetition
(thereby making it impossible for the opponent to reach the goal). Otherwise, a best
child (of an AND node) is a child with the lowest disproof number. This best child

9We note that if the parent is a base node itself, then the base node is equal to the parent.

5.5. The pseudo-code of the BTA algorithm 99

is returned. If the best child is either solved or marked as a possible-draw, NULL is
returned.

5.5.2 Phase 2: evaluate the most-proving node

After the most-proving node has been found, it has to be expanded and evaluated.
Phase 2 of the algorithm performs this task. Figure 5.14 provides the procedure
ExpandNode. The only parameter is node, being the node to be expanded.

procedure ExpandNode(node)
if NodeHasBaseNode(node) then baseNode := BaseNode(node)

else baseNode := node

if baseNode.proof=0 or baseNode.disproof=0 then begin
/* 1: base node already solved */
node.proof := baseNode.proof
node.disproof := baseNode.disproof
end elseif PossibleDrawSet(node) then begin
/* 2: node has become a real draw */
node.proof := oo
node.disproof := 0
baseNode.proof := co
baseNode.disproof := 0
end else begin
/* 3: node has to be expanded */
GenerateAllChildren(baseNode)
for i:=1 to baseNode.numberOfChildren do begin
Evaluate(baseNode.child[i])
SetProofAndDisproofNumbers(baseNode.child[i])
if not NodeHasBaseNode(baseNode.child[i]) then
baseNode.child[i].expanded := false

end
SetProofAndDisproofNumbers(baseNode)
baseNode.expanded := true

node.proof := baseNode.proof
node.disproof := baseNode.disproof
end

end /* ExpandNode */

Figure 5.14: The procedure ExpandNode.

The procedure starts establishing the base node of the node!. If the base node

10We note that if the node is a base node itself, then the base node is equal to the node.

100 Chapter 5. The graph-history-interaction problem

is solved (case 1), the node is evaluated accordingly.

Otherwise, if the node is marked as a possible-draw (case 2) (and since it was
chosen by function SelectMostProvingNode), it is evaluated as a real draw.

In case 3 the node has to be expanded. All children are generated, and evalu-
ated. If a generated child has no corresponding base node, the attribute expanded is
initialized to false; if it has a corresponding base node, the attribute expanded has
been initialized before. Then the node itself is initialized by procedure SetProofAnd-
DisproofNumbers.

5.5.3 Phase 3: back up the new information

Phase 3 of the algorithm has as task to back up the evaluation value of the most-
proving node. The procedure for updating the values of the nodes in the path is
listed in Figure 5.15. The procedure has two parameters. The first parameter (node)
is the node to be updated, while the second parameter (root) is the root of the search
tree. Depending on the node type, UpdateOrNode (Figure 5.16) or UpdateAndNode
(Figure 5.17) is performed.

procedure UpdateAncestors(node, root)
while node#nil do begin
if NodeHasBaseNode(node) then baseNode := BaseNode(node)

else baseNode := node

if node.type=OR then UpdateOrNode(node, baseNode)
else UpdateAndNode(node, baseNode)

node := node.parent /* parent in current path */
end
if PossibleDrawSet(root) then
UnMarkAsPossibleDraw(root)
end /* UpdateAncestors */

Figure 5.15: The procedure UpdateAncestors.

The parameters of UpdateOrNode are node and baseNode. The algorithm basi-
cally is the same as the or part of the procedure SetProofAndDisproofNumbers. It
only differs when a child is marked as a possible-draw. In that case, the child is
discarded so its value is not used when calculating the back-up value of the node.
Then, the possible-draw marking of the child is removed. If the node appears to be
disproved (since all children are either disproved or marked as a possible-draw) and a
repetition child exists, the value of the node is calculated by procedure SetProofAnd-
DisproofNumbers. Otherwise, the value has been calculated correctly. If the node has
been solved, its base node is initialized accordingly.

5.5. The pseudo-code of the BTA algorithm 101

procedure UpdateOrNode(node, baseNode)
min = oo
sum =0
pdPresent := false
for i:=1 to baseNode.numberOfChildren do begin
if PossibleDrawSet(baseNode.child[i]) then begin
pdPresent := true
proof := oo
disproof := 0
UnMarkAsPossibleDraw(baseNode.child[i])
end else begin
proof := baseNode.child[i].proof
disproof := baseNode.child[i].disproof

end
if proof<min then min := proof
sum := sum -+ disproof

end

if min=oco and pdPresent then
SetProofAndDisproofNumbers(node)
else begin
node.proof := min
node.disproof := sum
end
if node.proof=0 or node.disproof=0 then begin /* node solved */
baseNode.proof := node.proof
baseNode.disproof := node.disproof
end

end /* UpdateOrNode */

Figure 5.16: The procedure UpdateOrNode.

102 Chapter 5. The graph-history-interaction problem

The two parameters of UpdateAndNode are equal to the parameters of proce-
dure UpdateOrNode. The procedure differs from the AND part of the procedure Set-
ProofAndDisproofNumbers when the node is solved, and hence the value of its base
node is evaluated accordingly'’.

procedure UpdateAndNode(node, baseNode)

min 1= oo

sum =0

for i:=1 to baseNode.numberOfChildren do begin
proof := baseNode.child[i].proof
disproof := baseNode.child[i].disproof
sum := sum -+ proof
if disproof<min then min := disproof

end

node.proof := min

node.disproof := sum

if node.proof=0 or node.disproof=0 then begin /* node solved */
baseNode.proof := node.proof
baseNode.disproof := node.disproof

end

end /* UpdateAndNode */

Figure 5.17: The procedure UpdateAndNode.

5.6 Experimental set-up

In this section give the experimental set-up for evaluating the BTA pn-search algo-
rithm presented in Section 5.5. The game of chess is used as the test domain. Our
BTA algorithm, denoted by BTA, is compared with the following three pn-search
variants:

1. the standard tree algorithm (see Section 3.2), denoted by Tree,
2. a DAG algorithm, developed by Schijf (1993), denoted by DAG, and

3. an (incorrect) DCG algorithm, developed by Schijf et al. (1994), denoted by
DCG.

11'We note that it is impossible for a child of an AND node to be marked as a possible-draw, since
in that case the search for a most-proving node would have been terminated in an earlier phase,
and the parent already would have been marked as a possible-draw.

5.7. Results 103

In all implementations, the move ordering is identical. The test set of 117 positions is
given in Section 3.4 (see Appendix D). All four algorithms searched for a maximum
of 500,000 nodes per test position. After 500,000 nodes the search was terminated
and if no solution had been found the problem was marked as not solved'?.

5.7 Results

To verify our solution we have first tested the position given in Figure 5.1'3. Tree
finds a solution within 482,306 nodes. DCG, ignoring the history of a position,
incorrectly states that White cannot win (due to the GHI problem). Our BTA does
find a solution within 10,694 nodes. This provides evidence that the occurrence of
the GHI problem has been correctly handled. BTA shows the benefit of being a DCG
algorithm, as evidenced by the decrease in number of nodes investigated by a factor
of roughly 40 as compared to Tree.

4t of pos. solved Total nodes
(out of 117) (96 positions)

Tree 99 4,903,374
DAG 102 3,222,234
DCG 103 2,482,829
BTA 107 2,844,024

Table 5.1: Comparing four pn-search variants.

Thereafter, we have performed the experiments as described in Section 5.6.
The outcomes are summarized in Table 5.1. The complete results are listed in Ap-
pendix G. The first column shows the four pn-search variants. The number of posi-
tions solved by each algorithm is given in the second column. Exactly 96 positions
were solved by all four algorithms. BTA solves each position which was solved by
at least one of the other three algorithms. In the third column the total number of
nodes evaluated for the 96 positions are listed. The additional positions solved per
algorithm are as follows.

Tree: K208, K215, R281.
DAG: K208, K215, K216, rR168, R182, R281.
DCG: K44, k60, K217, K284, R168, R182, R252.

12The maximum number of nodes in these pn-search experiments is lower than the corresponding
number given in Chapter 3 due to implementation details.

13We note that for this problem the goal for White was set to promotion to Queen (without Black
being able to capture it on the next ply) instead of mate. Further, the search was restricted to the
5x5 ad—e8 board. This helps to find the solution faster, but does not influence the occurrence of

the GHI problem.

104 Chapter 5. The graph-history-interaction problem

BTA: K44, K60, K208, K215, K216, K217, K284, rR168, R182, R252, R281.
Neither algorithm: K8, K40, K78, K195, K209, k210, K220, rR96, R105, R201.

Obviously, Tree investigates the largest number of nodes. The explanation is easy:
the algorithm does not recognize transpositions. Further, DCG examines the smallest
number of nodes: this algorithm sometimes prematurely disproves positions; hence,
on the average fewer nodes have to be examined. However, if such a prematurely
disproved position does lead to a win and the node is important to the principal
variation of the tree, the win can be missed, as happens in the positions K208,
K215, K216 and R281. This is already remarked by Schijf et al. (1994).

From Table 5.1 it further follows that BTA performs best. The four positions
which were incorrectly disproved by DCG were proved by BTA. Compared to the
tree algorithm, BTA solves eight additional positions and uses only 58% of the
number of nodes: a clear improvement. The reduction in nodes compared to DAG
is still 11.7%. The increase in nodes searched relative to DCG (12.7%) is already
explained by the unreliability of the latter. We feel that the advantage of the larger
number of solutions found heavily outweighs the drawback of the increase in nodes
searched. We note that the selection of the most-proving node in BTA can be costly
in positions with many possible transpositions. However, in these types of positions
the reduction in the number of nodes searched is even larger than in “normal”
positions.

As a case in point we present Figure 5.18 corresponding with Diagram 216 in
Krabbé (1985). It is solved by our BTA algorithm (in 247,686 nodes) and by the
DAG algorithm (in 366,336 nodes) and not by the two other algorithms (within
500,000 nodes). Many transpositions (and many repetitions of positions) exist, since
after 1. Ea5+4+ b8 White has a so-called zwickmiihle and can position the Bishop
anywhere along the a7-g1 diagonal for free. For instance, after 2. £a7+ a8 3.
£b64+ Hb8 almost the same position with the same player to move has been
reached: the Bishop has moved from d4 to b6. At any time White can choose such a
manoeuvre. For the chess-playing reader, the solutionis 1. Ea5+! b8 2. a7+
Ha8 3. 2c5+! &b8 4. Eb5+ a8 5. Be?! &7 6. Bab+ HLb8 7. &a7+
Ha8 8. £d4+! Hb89. Eb5+ La8 10. Ed7! Weh 11. Eab+ LHb8 12. a7+
a8 13. £b6+ Hb8 14. & xc7 mate.

5.8 Chapter conclusions

In this chapter we have given a solution to the GHI problem, resulting in an improved
DCG algorithm for pn search, called BTA (Base-Twin Algorithm). Tt is shown that
the restricted version (ad4-e8 board) of a well-known position, in which the GHI
problem occurs when a naive DCG algorithm is used, our BTA algorithm finds the
correct solution. The results on a test set of 117 positions do not falsify our claim.
Despite the additional overhead for recognizing positions suffering from the GHI
problem, our BTA algorithm is hardly less efficient than other, not entirely correct
DCG algorithms, and finds more solutions.

5.8. Chapter conclusions 105

Figure 5.18: Mate in 14 (wTM); (J. Kriheli).

Although our algorithms are confined to pn search, the strategy used is gener-
ally applicable to any best-first search algorithm. The only important criterion for
application is that a DCG is being built according to the best-first principle (choose
some leaf node, expand that node, evaluate the children, and back up the result).
We consider the GHI problem in best-first search to be solved. The importance of
this statement is that with the increasing availability of computer memory a growing
tendency exists to use best-first search algorithms and variants thereof, or best-first
fixed-depth algorithms (Plaat et al., 1996), which no longer suffer from the GHI
problem.

Our solution to the GHI problem gives an affirmative answer to the third problem
statement: is it possible to give a solution for the GHI problem for best-first search?
By transforming the search tree into our DCG representation, less memory is needed,
since only the roots of equal subtrees are duplicated. Moreover, less search is needed,
since the DCG contains fewer nodes than the tree. One disadvantage is the cost of
finding a most-proving node. If many transpositions exist in the tree, many possible
draws will occur, prolonging the search for a most-proving node. We are convinced
that the advantage of solving the GHI problem outweighs this disadvantage. What
remains is solving the GHI problem for depth-first search. This will need a differ-
ent approach, storing additional information in transposition tables rather than in
the search tree/graph in memory. However, Campbell (1985) already noted that in
depth-first search the frequency of GHI problems is considerably smaller than in
best-first search. The solution of the GHI problem for depth-first search therefore
seems to be of minor importance for practical use.

106 Chapter 5. The graph-history-interaction problem

